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4.7 The VHDL Hardware Design Language
In the mid-1980s, the U.S. Department of Defense (DoD) and the IEEE
sponsored the development of a highly capable hardware-description language
called VHDL. The language started out with and still has the following features:

• Designs may be decomposed hierarchically.

• Each design element has both a well-defined interface (for connecting it to
other elements) and a precise behavioral specification (for simulating it). 

• Behavioral specifications can use either an algorithm or an actual hardware
structure to define an element’s operation. For example, an element can be
defined initially by an algorithm, to allow design verification of higher-
level elements that use it; later, the algorithmic definition can be replaced
by a hardware structure.

• Concurrency, timing, and clocking can all be modeled. VHDL handles
asynchronous as well as synchronous sequential-circuit structures.

• The logical operation and timing behavior of a design can be simulated. 

Thus, VHDL started out as a documentation and modeling language, allowing
the behavior of digital-system designs to be precisely specified and simulated. 

While the VHDL language and simulation environment were important
innovations by themselves, VHDL’s utility and popularity took a quantum leap
with the commercial development of VHDL synthesis tools. These programs can
create logic-circuit structures directly from VHDL behavioral descriptions.
Using VHDL, you can design, simulate, and synthesize anything from a simple
combinational circuit to a complete microprocessor system on a chip. 

VHDL was standardized by the IEEE in 1987 (VHDL-87) and extended in
1993 (VHDL-93). In this section we’ll a subset of language features that are legal
under either standard. We’ll describe additional features for sequential logic
design in Section 7.12.

4.7.1 Design Flow
It’s useful to understand the overall VHDL design environment before

jumping into the language itself. There are several steps in a VHDL-based
design process, often called the design flow. These steps are applicable to any
HDL-based design process and are outlined in Figure 4-50 on page 264.

VHDL

THE MEANING
OF VHDL

“VHDL” stands for “VHSIC Hardware Description Language.” VHSIC, in turn,
stands for “Very High Speed Integrated Circuit,” which was a U.S. Department
of Defense program to encourage research on high-performance IC technology
(using Very Healthy Sums of Instant Cash!).

VHDL synthesis tools

VHDL-87
VHDL-93

design flow
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The so-called “front end” begins with figuring out the basic approach and
building blocks at the block diagram level. Large logic designs, like software
programs, are usually hierarchical, and VHDL gives you a good framework for
defining modules and their interfaces, and filling in the details later.

The next step is the actual writing of VHDL code for modules, their inter-
faces, and their internal details. Since VHDL is a text-based language, in
principle you can use any text editor for this part of the job. However, most
design environments include a specialized VHDL text editor that makes the job a
little easier. Such editors include features like automatic highlighting of VHDL
keywords, automatic indenting, built-in templates for frequently used program
structures, and built-in syntax checking and one-click access to the compiler.

Once you’ve written some code, you will of course want to compile it. A
VHDL compiler analyzes your code for syntax errors and also checks your code
for compatibility with other modules on which it relies. It also creates the inter-
nal information that is needed for a simulator to process your design later. As in
other programming endeavors, you probably shouldn’t wait until the very end of
coding to compile all of your code. Doing a piece at a time can prevent you from

VERILOG
AND VHDL

At about the same time that VHDL was developing, a different hardware design
language appeared on the scene. Verilog HDL, or simply Verilog, was intro-
duced by Gateway Design Automation in 1984 as a proprietary hardware
description and simulation language. The subsequent introduction of Verilog-
based synthesis tools in 1988 by then-fledgling Synopsys and the 1989 acquisi-
tion of Gateway by Cadence Design Systems was a winning combination that
led to widespread use of the language.

Today, VHDL and Verilog both enjoy widespread use and share the logic
synthesis market roughly 50/50. Verilog has its syntactic roots in C and is in
some respects in easier language to learn and use, while VHDL is more like Ada
(a DoD-sponsored software programming language) and has more features that
support large project development.

Comparing the pros and cons of starting out with one language versus the
other, David Pellerin and Douglas Taylor probably put it best in their book,
VHDL Made Easy! (Prentice Hall, 1997):

Both languages are easy to learn and hard to master. And once you
have learned one of these languages, you will have no trouble
transitioning to the other.

VHDL text editor

THE MEANING
OF VERILOG

“Verilog” isn’t an acronym, but it has some interesting palindromes, including
“I, Glover” (Danny?), “G.I. lover,” “Go, liver!” and “I grovel.” Oh, I suppose it
could also be a contraction of “VERIfy LOGic.”
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proliferating syntax errors, inconsistent names, and so on, and can certainly give
you a much-needed sense of progress when the project end is far from sight!

Perhaps the most satisfying step comes next—simulation. A VHDL simu-
lator allows you to define and apply inputs to your design, and to observe its
outputs, without ever having to build the physical circuit. In small projects, the
kind you might do as homework in a digital design class, you would probably
generate inputs and observe outputs manually. But for larger projects, VHDL
gives you the ability to create “test benches” that automatically apply inputs and
compare them with expected outputs. 

Actually, simulation is just one piece of a larger step called verification.
Sure, it is satisfying to watch your simulated circuit produce simulated outputs,
but the purpose of simulation is larger—it is to verify that the circuit works as
desired. In a typical large project, a substantial amount of effort is expended both
during and after the coding stage to define test cases that exercise the circuit over
a wide range of logical operating conditions. Finding design bugs at this stage
has a high value; if bugs are found later, all of the so-called “back-end” steps
must typically be repeated.

Note that there are at least two dimensions to verification. In functional
verification, we study the circuit’s logical operation independent of timing
considerations; gate delays and other timing parameters are considered to be
zero. In timing verification, we study the circuit’s operation including estimated
delays, and we verify that the setup, hold, and other timing requirements for
sequential devices like flip-flops are met. It is customary to perform thorough
functional verification before starting the back-end steps. However, our ability to
do timing verification at this stage is often limited since timing may be heavily
dependent on the results of synthesis and fitting. We may do preliminary timing
verification to gain some comfort with the overall design approach, but detailed
timing verification must wait until the end.

After verification, we are ready to move into the “back-end” stage. The
nature of and tools for this stage vary somewhat depending on the target
technology for the design, but there are three basic steps. The first is synthesis,
converting the VHDL description into a set of primitives or components that can

VHDL simulator

hierarchy/
block diagram

synthesis
fitting/

place+route
timing

verification

front-end
steps

back-end
steps

(very painful!)

coding

(painful, but not uncommon)

simulation/
verification

compilation

Figure 4-50 Steps in a VHDL or other HDL-based design flow.
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be assembled in the target technology. For example, with PLDs or CPLDs, the
synthesis tool may generate two-level sum-of-products equations. With ASICs,
it may generate a list of gates and a netlist that specifies how they should be
interconnected. The designer may “help” the synthesis tool by specifying certain
technology-specific constraints, such as the maximum number of logic levels or
the strength of logic buffers to use.

In the fitting step, a fitting tool or fitter maps the synthesized primitives or
components onto available device resources. For a PLD or CPLD, this may
mean assigning equations to available AND-OR elements. For an ASIC, it may
mean laying down individual gates in a pattern and finding ways to connect them
within the physical constraints of the ASIC die; this is called the place-and-route
process. The designer can usually specify additional constraints at this stage,
such as the placement of modules with a chip or the pin assignments of external
input and output pins. 

The “final” step is timing verification of the fitted circuit. It is only at this
stage that the actual circuit delays due to wire lengths, electrical loading, and
other factors can be calculated with reasonable precision. It is usual during this
step to apply the same test cases that were used in functional verification, but in
this step they are run against the circuit as it will actually be built.

As in any other creative process, you may occasionally take two steps
forward and one step back (or worse!). As suggested in the figure, during coding
you may encounter problems that force you to go back and rethink your hier-
archy, and you will almost certainly have compilation and simulation errors that
force you to rewrite parts of the code. 

The most painful problems are the ones that you encounter in the back end
of the design flow. For example, if the synthesized design doesn’t fit into an
available FPGA or doesn’t meet timing requirements, you may have to go back
as far as rethinking your whole design approach. That’s worth remembering—
excellent tools are still no substitute for careful thought at the outset of a design.

netlist

constraints

fitting
fitter

place and route

IT WORKS!? As a long-time logic designer and system builder, I always thought I knew what
it means when someone says about their circuit, “It works!”. It means you can
go into the lab, power-up a prototype without seeing smoke, and push a reset
button and use an oscilloscope or logic analyzer to watch the prototype go
through its paces.

But over the years, the meaning of “It works” has changed, at least for
some people. When I took a new job a few years ago, I was very pleased to hear
that several key ASICs for an important new product were all “working.” But
later (just a short time later) I figured out that the ASICs were working only in
simulation, and that the design team still had to do several arduous months of
synthesis, fitting, timing verification, and repeating, before they could order any
prototypes. “It works!”—sure. Just like my kids’ homework—“It’s done!”
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4.7.2 Program Structure
VHDL was designed with principles of structured programming in mind,

borrowing ideas from the Pascal and Ada software programming languages. A
key idea is to define the interface of a hardware module while hiding its internal
details. Thus, a VHDL entity is simply a declaration of a module’s inputs and
outputs, while a VHDL architecture is a detailed description of the module’s
internal structure or behavior.

Figure 4-51(a) illustrates the concept. Many designers like to think of a
VHDL entity declaration as a “wrapper” for the architecture, hiding the details
of what’s inside while providing the “hooks” for other modules to use it. This
forms the basis for hierarchical system design—the architecture of a top-level
entity may use (or “instantiate”) other entities, while hiding the architectural
details of lower-level entities from the higher-level ones. As shown in (b), a
higher-level architecture may use a lower-level entity multiple times, and multi-
ple top-level architectures may use the same lower-level one. In the figure,
architectures B, E and F stand alone; they do not use any other entities.

entity
architecture

architecture

entity

architecture A

entity A

architecture B

entity B

architecture C

entity C

architecture D

entity D

(a) (b)

architecture E

entity E

architecture F

entity F

Figure 4-51
VHDL entities and 
architectures:
(a) “wrapper” concept; 
(b) hierarchical use.
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In the text file of a VHDL program, the entity declaration and architecture
definition are separated, as shown in Figure 4-52. For example, Table 4-26 is a
very simple VHDL program, for a 2-input “inhibit” gate. In large projects, enti-
ties and architectures are sometimes defined in separate files, and the compiler
matches them up according to their declared names.

Like other high-level programming languages, VHDL generally ignores
spaces and line breaks, and these may be provided as desired for readability.
Comments begin with two hyphens (--) and end at the end of a line.

VHDL defines many special character strings, called reserved words or
keywords. Our example includes several—entity, port, is, in, out, end,
architecture, begin, when, else, and not. User-defined identifiers begin
with a letter and contain letters, digits, and underscores. (An underscore may not
follow another underscore or be the last character in an identifier.) Identifiers in
the example are Inhibit, X, Y, BIT, Z, and Inhibit_arch. “BIT” is a built-in
identifier for a predefined type; it’s not considered a reserved word because it
can be redefined. Reserved words and identifiers are not case sensitive. 

entity Inhibit is    -- also known as 'BUT-NOT'
  port (X,Y: in BIT;    --  as in 'X but not Y'
        Z:   out BIT);  --  (see [Klir, 1972])
end Inhibit;

architecture Inhibit_arch of Inhibit is
begin
  Z <= '1' when X='1' and Y='0' else '0'; 
end Inhibit_arch;

Ta b l e  4 - 2 6
VHDL program for 
an “inhibit” gate.

GO
CONFIGURE!

VHDL actually allows you to define multiple architectures for a single entity,
and provides a configuration management facility that allow you to specify
which one to use during a particular compilation or synthesis run. This lets you
try out a different architectural approach without throwing away or hiding your
other efforts. However, we won’t use or further discuss this facility in this text.

entity declaration
architecture definition

architecture definition

entity declaration

text file (e.g., mydesign.vhd)

Figure 4-52
VHDL program file 
structure.

comments
reserved words
keywords
identifiers
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An entity declaration has the general syntax shown in Table 4-27. Besides
naming the entity, the purpose of the entity declaration is to define its external
interface signals or ports in its port declaration part. In addition to the keywords
entity, is, port, and end, an entity declaration has the following elements:

entity-name A user-selected identifier to name the entity. 

signal-namesA comma-separated list of one or more user-selected identifiers
to name external-interface signals.

mode One of four reserved words, specifying the signal direction:

in The signal is an input to the entity.

out The signal is an output of the entity. Note that the value
of such a signal cannot be “read” inside the entity’s
architecture, only by other entities that use it.

buffer The signal is an output of the entity, and its value can
also be read inside the entity’s architecture.

inout The signal can be used as an input or an output of the
entity. This mode is typically used for three-state input/
output pins on PLDs.

signal-type A built-in or user-defined signal type. We’ll have a lot to say
about types in the next subsection.

Note that there is no semicolon after the final signal-type; swapping the closing
parenthesis with the semicolon after it is a common syntax error for beginning
VHDL programmers.

An entity’s ports and their modes and types are all that is seen by other
modules that use it. The entity’s internal operation is specified in its architecture
definition, whose general syntax is shown in Table 4-28. The entity-name in this
definition must be the same as the one given previously in the entity declaration.
The architecture-name is a user-selected identifier, usually related to the entity
name; it can be the same as the entity name if desired.

An architecture’s external interface signals (ports) are inherited from the
port-declaration part of its corresponding entity declaration. An architecture
may also include signals and other declarations that are local to that architecture,
similar to other high-level languages. Declarations common to multiple entities
can be made in a separate “package” used by all entities, as discussed later.

Ta b l e  4 - 2 7
Syntax of a VHDL 
entity declaration.

entity entity-name is
  port (signal-names : mode signal-type;
        signal-names : mode signal-type;
        ...
        signal-names : mode signal-type);
end entity-name;

port
port declaration

architecture definition
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The declarations in Table 4-28 can appear in any order. In due course we’ll
discuss many different kinds of declarations and statements that can appear in
the architecture definition, but the easiest to start with is the signal declaration.
It gives the same information about a signal as in a port declaration, except that
no mode is specified:

  signal signal-names : signal-type;

Zero or more signals can be defined within an architecture, and they roughly
correspond to named wires in a logic diagram. They can be read or written
within the architecture definition, and like other local objects, can be referenced
only within the encompassing architecture definition.

VHDL variables are similar to signals, except that they usually don’t have
physical significance in a circuit. In fact, notice that Table 4-28 has no provision
for “variable declarations” in an architecture definition. Rather, variables are
used in VHDL functions, procedures, and processes, each of which we’ll discuss
later. Within these program elements, the syntax of a variable declaration is just
like that of a signal declaration, except that the variable keyword is used:

  variable variable-names : variable-type;

4.7.3 Types and Constants
All signals, variables, and constants in a VHDL program must have an

associated “type.” The type specifies the set or range of values that the object can
take on, and there is also typically a set of operators (such as add, AND, and so
on) associated with a given type.

VHDL has just a few predefined types, listed in Table 4.7.3. In the rest of
this book, the only predefined types that we’ll use are integer, character, and
boolean. You would think that types  with names “bit” and “bit_vector”

architecture architecture-name of entity-name is
  type declarations
  signal declarations
  constant declarations
  function definitions
  procedure definitions
  component declarations
begin
  concurrent-statement
  ...
  concurrent-statement
end architecture-name;

Ta b l e  4 - 2 8
Syntax of a VHDL 
architecture definition.

bit             character       severity_level
bit_vector      integer         string
boolean         real            time

Ta b l e  4 - 2 9
VHDL predefined 
types.

signal declaration

variable

variable declaration

type

predefined types
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would be essential in digital design, but it turns out that user-defined versions of
these types are more useful, as discussed shortly.

Type integer is defined as the range of integers including at least the
range –2,147,483,647 through +2,147,483,647 (–231+1 through +231–1); VHDL
implementations may extend this range. Type boolean has two values, true and
false. The character type contains all of the characters in the ISO 8-bit char-
acter set; the first 128 characters are the ASCII characters. Built-in operators for
the integer and boolean types are listed in Table 4-30. 

The most commonly used types in typical VHDL programs are user-
defined types, and the most common of these are enumerated types, which are
defined by listing their values. Predefined types boolean and character are
enumerated types. A type declaration for an enumerated type has the format
shown in the first line of Table 4-31. Here, value-list is a comma-separated list
(enumeration) of all possible values of the type. The values may be user-defined
identifiers or characters (where a “character” is an ISO character enclosed in

Ta b l e  4 - 3 0
Predefined operators 
for VHDL’s integer 
and boolean types.

integer Operators boolean Operators

+ addition and AND

- subtraction or OR

* multiplication nand NAND

/ division nor NOR

mod modulo division xor Exclusive OR

rem modulo remainder xnor Exclusive NOR

abs absolute value not complementation
** exponentiation

Ta b l e  4 - 3 1
Syntax of VHDL 
type and constant 
declarations.

type type-name is (value-list);

subtype subtype-name is type-name start to end;
subtype subtype-name is type-name start downto end;

constant constant-name: type-name := value;

integer

boolean

true, false
character

STRONG
TYPING

Unlike C, VHDL is a strongly typed language. This means that the compiler
does not allow you to assign a value to a signal or variable unless the type of the
value precisely matches the declared type of the signal or variable. 

Strong typing is both a blessing and a curse. It makes your programs more
reliable and easier to debug, because it makes it difficult for you to make “dumb
errors” where you assign a value of the wrong type or size. On the other hand, it
can be exasperating at times because even simple operations, such as reinterpret-
ing a 2-bit signal as an integer (for example, to select one of four outcomes in a
“case” statement) may require you to call a type-conversion function explicitly.

user-defined types
enumerated types
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single quotes). The first style is used most often to define cases or states for a
state machine, for example,

type traffic_light_state is (reset, stop, wait, go);

The second style is used in the very important case of a standard user-defined
logic type std_logic, shown in Table 4-32 and part of the IEEE 1164 standard
package, discussed in Section 4.7.5. This type includes not only '0' and '1',
but seven other values that have been found useful in simulating a logic signal
(bit) in a real logic circuit, as explained in more detail in Section 5.6.4.

VHDL also allows users to create subtypes of a type, using the syntax
shown in Table 4-31. The values in the subtype must be a contiguous range of
values of the base type, from start to end. For an enumerated type, “contiguous”
refers to positions in the original, defining value-list. Some examples of subtype
definitions are shown below:

subtype twoval_logic is std_logic range '0' to '1';
subtype fourval_logic is std_logic range 'X' to 'Z';
subtype negint is integer range -2147483647 to 1;
subtype bitnum is integer range 31 downto 0;

Notice that the order of a range may be specified in ascending or descending
order, depending on whether to or downto is used. There are certain attributes
of subtypes for which this distinction is significant, but we don’t use them in this
book and we won’t discuss this further.

type STD_ULOGIC is ( 'U',  -- Uninitialized
                     'X',  -- Forcing  Unknown
                     '0',  -- Forcing  0
                     '1',  -- Forcing  1
                     'Z',  -- High Impedance   
                     'W',  -- Weak     Unknown
                     'L',  -- Weak     0       
                     'H',  -- Weak     1       
                     '-'   -- Don't care
                    );
subtype STD_LOGIC is resolved STD_ULOGIC;

Ta b l e  4 - 3 2
Definition of VHDL 
std_logic type
(see Section 5.6.4 
for discussion of 
“resolved”).

std_logic

WHAT A
CHARACTER!

You may be wondering why the values in the std_logic type are defined as
characters rather than one-letter identifiers. Certainly “U”, “ X”, and so on would
be easier to type than “'U'”, “ 'X'”, and so on. Well, that would require a one-
letter identifier other than “-” to be used for don’t-care, but that’s no big deal.
The main reason for using characters is that “0” and “1” could not be used,
because they’re already recognized as integer constants. This goes back to
VHDL’s strong typing; it was not deemed advisable to let the compiler perform
an automatic type conversion depending on the context. 

subtypes

to

downto
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VHDL has two predefined integer subtypes, defined below:

subtype natural is integer range 0 to highest-integer;
subtype positive is integer range 1 to highest-integer;

Constants contribute to the readability, maintainability, and portability of
programs in any language. The syntax of a constant declaration in VHDL is
shown in the last line of Table 4-31; examples are shown below:

constant BUS_SIZE: integer := 32;    -- width of component
constant MSB: integer := BUS_SIZE-1; -- bit number of MSB
constant Z: character := 'Z';        -- synonym for Hi-Z value

Notice that the value of a constant can be a simple expression. Constants can be
used anywhere the corresponding value can be used, and can be put to especially
good use in type definitions, as we’ll soon show.

Another very important category of user-defined types are array types.
Like other languages, VHDL defines an array as an ordered set of elements of
the same type, where each element is selected by an array index. Table 4-33
shows several versions of the syntax for declaring an array in VHDL. In the first
two versions, start and end are integers that define the possible range of the array
index and hence the total number of array elements. In the last three versions, all
or a subset of the values of an existing type (range-type) are the range of the
array index. 

Examples of array declarations are given in Table 4-34. The first pair of
examples are very ordinary, and show both ascending and descending ranges.
The next example shows how a constant, WORD_LEN, can be used with an array
declaration, and also shows that a range value can be a simple expression. The

Ta b l e  4 - 3 3
Syntax of VHDL 
array declarations.

type type-name is array (start to end) of element-type;

type type-name is array (start downto end) of element-type;

type type-name is array (range-type) of element-type;

type type-name is array (range-type range start to end) of element-type;

type type-name is array (range-type range start downto end) of element-type;

UNNATURAL
ACTS

Although VHDL defines the subtype “natural” as being nonnegative integers
starting with 0, most mathematicians consider and define the natural numbers to
begin with 1. After all, in early history people began counting with 1, and the
concept of “0” arrived much later. Still, there is some discussion and perhaps
controversy on the subject, especially as the computer age has led more of us to
think with 0 as a starting number. For the latest thinking, search the Web for
“natural numbers.”

constants
constant declaration

array types
array
array index
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third example shows that an array element may itself be an array, thus creating a
two-dimensional array. The last example shows that an enumerated type (or a
subtype) may be specified as the array element range; the array in this example
has four elements, based on our previous definition of traffic_light_state.

Array elements are considered to be ordered from left to right, in the
same direction as index range. Thus, the leftmost element of arrays of types
monthly_count, byte, word, reg_file, and statecount have indices 1, 7,
31, 1, and reset, respectively.

Within VHDL program statements, individual array elements are accessed
using the array name and the element’s index in parentheses. For example, if M,
B, W, R, and S are signals or variables of the five array types defined in Table 4-34,
then M(11), B(5), W(WORD_LEN-5), R(0,0), R(0), and S(reset) are all valid
elements. 

Literal values can be specified by listing the element values in parentheses.
For example, the byte variable B could be set to all ones by the statement

B := ('1','1','1','1','1','1','1','1');

VHDL also has a shorthand notation that allows you to specify values by index.
For example, to set word variable W to all ones except for zeroes in the LSB of
each byte, you can write

W := (0=>'0',8=>'0',16=>'0',24=>'0',others=>'1');

The methods just described work for arrays with any element-type, but the
easiest way write a literal of type STD_LOGIC is to use a “string.” A VHDL string
is a sequence of ISO characters enclosed in double quotes, such as "Hi there".
A string is just an array of characters; as a result, a STD_LOGIC array of a given
length can be assigned the value of a string of the same length, as long as the
characters in the string are taken from the set of nine characters defined as the
possible values of the STD_LOGIC elements—'0', '1', 'U', and so on. Thus, the
previous two examples can be rewritten as follows:

B := "11111111";
W := "11111110111111101111111011111110";

type monthly_count is array (1 to 12) of integer;
type byte is array (7 downto 0) of STD_LOGIC;

constant WORD_LEN: integer := 32;
type word is array (WORD_LEN-1 downto 0) of STD_LOGIC;

constant NUM_REGS: integer := 8;
type reg_file is array (1 to NUM_REGS) of word;

type statecount is array (traffic_light_state) of integer;

Ta b l e  4 - 3 4
Examples of VHDL 
array declarations.

others

string
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It is also possible to refer to a contiguous subset or slice of an array by
specifying the starting and ending indices of the subset, for example, M(6 to 9),
B(3 downto 0), W(15 downto 8), R(0,7 downto 0), R(1 to 2), S(stop to go).
Notice that the slice’s direction must be the same as the original array’s.

The most important array type in typical VHDL programs is the IEEE
1164 standard user-defined logic type std_logic_vector, which defines an
ordered set of std_logic bits. The definition of this type is:

type STD_LOGIC_VECTOR is array ( natural range <> ) of STD_LOGIC;

This is an example of an unconstrained array type—the range of the array is
unspecified, except that it must be a subrange of a defined type, in this case,
natural. This VHDL feature allows us to develop architectures, functions, and
other program elements in a more general way, somewhat independent of the
array size or its range of index values. An actual range is specified when a signal
or variable is assigned this type. We’ll see examples in the next subsection.

4.7.4 Functions and Procedures
Like a function in a high-level programming language, a VHDL function accepts
a number of arguments and returns a result. Each of the arguments and the result
in a VHDL function definition or function call have a predetermined type. 

The syntax of a function definition is shown in Table 4-35. After giving the
name of the function, it lists zero or more formal parameters which are used
within the function body. When the function is called, the actual parameters in
the function call are substituted for the formal parameters. Following VHDL’s
strong-typing policy, the actual parameters must be the same type or a subtype of
the formal parameters. When the function is called from within an architecture,
a value of the type return-type is returned in place of the function call. 

Ta b l e  4 - 3 5
Syntax of a VHDL 
function definition.

function function-name (
     signal-names : signal-type;
     signal-names : signal-type;
     ...
     signal-names : signal-type
) return return-type is
  type declarations
  constant declarations
  function definitions
  procedure definitions
begin
  sequential-statement
  ...
  sequential-statement
end function-name;

array slice

std_logic_vector

unconstrained array 
type

function
arguments
result
function definition
formal parameters
actual parameters
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As shown in the table, a function may define its own types, constants, and
nested functions and procedures which are local to the enclosing function decla-
ration. The keywords begin and end enclose a series of “sequential statements”
that are executed when the function is called. We’ll take a closer look at different
kinds of sequential statements and their syntax later, but you should be able to
understand the examples here based on your previous programming experience.

The VHDL “inhibit-gate” architecture of Table 4-26 on page 267 is modi-
fied in Table 4-36 to use a function. Within the function definition, the keyword
return indicates when the function should return to the caller, and it is followed
by an expression with the value to be returned to the caller. The type resulting
from this expression must match the return-type in the function declaration.

The IEEE 1164 standard logic package defines many functions that oper-
ate on the standard types std_logic and std_logic_vector. Besides
specifying a number of user-defined types, the package also defines the basic
logic operations on these types such as and and or. This takes advantage of
VHDL’s ability to overload operators. This facility allows the user to specify a
function that is invoked whenever a built-in operator symbol (and, or, +, etc.) is
used with a matching set of operand types. There may be several definitions for
a given operator symbol; the compiler automatically picks the definition that
matches the operand types in each use of the operator.

For example, Table 4-37 contains code, taken from the IEEE package, that
shows how the “and” operation is defined for std_logic operands. This code
may look complicated, but we’ve already introduced all of the basic language
elements that it uses (except for “resolved”, which we describe in connection
with three-state logic in Section 5.6.4). 

The inputs to the function may be of type std_ulogic or its subtype
std_logic. Another subtype UX01 is defined to be used as the function’s return
type; even if one of the “and” inputs is a non-logic value ('Z', 'W', etc.), the

architecture Inhibit_archf of Inhibit is

function ButNot (A, B: bit) return bit is
begin
  if B = '0' then return A;
  else return '0';
  end if;
end ButNot;

begin
  Z <= ButNot(X,Y); 
end Inhibit_archf;

Ta b l e  4 - 3 6
VHDL program for 
an “inhibit” function.

return

operator overloading
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function will return one of only four possible values. Type stdlogic_table

defines a two-dimensional, 9× 9 array indexed by a pair of std_ulogic values.
For the and_table, the table entries are arranged so that if either index is '0' or
'L' (a weak '0'), the entry is '0'. A '1' entry is found only if both inputs are
'1' or 'H' (a weak '1'). Otherwise, a 'U' or 'X' entry appears.

In the function definition itself, double quotes around the function name
indicate operator overloading. The “executable” part of the function is just a sin-
gle statement that returns the table element indexed by the two inputs, L and R, of
the “and” function. 

Because of VHDL’s strong typing requirements, it’s often necessary to
convert a signal from one type to another, and the IEEE 1164 package contains
several conversion functions, for example, from BIT to STD_LOGIC or vice versa.
A commonly needed conversion is from STD_LOGIC_VECTOR into a correspond-
ing integer value. IEEE 1164 does not include such a conversion function
because different designs may need to use different number interpretations, for
example signed versus unsigned. However, we can write our own conversion
function as shown in Table 4-38.

The CONV_INTEGER function uses a simple iterative algorithm equivalent
to the nested expansion formula on page 26. We won’t be describing the FOR,
CASE, and WHEN statements that it uses until Section 4.7.8, but you should get the
idea. The null statement is easy—it means “do nothing.” The range of the FOR

loop is specified by “X'range”, where the single quote after a signal name

Ta b l e  4 - 3 7
Definitions relating to 
the “and” operation 
on STD_LOGIC values 
in IEEE 1164.

SUBTYPE UX01 IS resolved std_ulogic RANGE 'U' TO '1';
                                               -- ('U','X','0','1')
TYPE stdlogic_table IS ARRAY(std_ulogic, std_ulogic) OF std_ulogic;

-- truth table for "and" function
CONSTANT and_table : stdlogic_table := (
--      ----------------------------------------------------
--      |  U    X    0    1    Z    W    L    H    -         |   |  
--      ----------------------------------------------------
        ( 'U', 'U', '0', 'U', 'U', 'U', '0', 'U', 'U' ),  -- | U |
        ( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' ),  -- | X |
        ( '0', '0', '0', '0', '0', '0', '0', '0', '0' ),  -- | 0 |
        ( 'U', 'X', '0', '1', 'X', 'X', '0', '1', 'X' ),  -- | 1 |
        ( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' ),  -- | Z |
        ( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' ),  -- | W |
        ( '0', '0', '0', '0', '0', '0', '0', '0', '0' ),  -- | L |
        ( 'U', 'X', '0', '1', 'X', 'X', '0', '1', 'X' ),  -- | H |
        ( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' )   -- | - |
);

FUNCTION "and" ( L : std_ulogic; R : std_ulogic ) RETURN UX01 IS
BEGIN
    RETURN (and_table(L, R));
END "and";

null statement
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means “attribute,” and range is a built-in attribute identifier that applies only to
arrays and means “range of this array’s index, from left to right.”

In the other direction, we can convert an integer to a STD_LOGIC_VECTOR

as shown in Table 4-39. Here we must specify not only the integer value to be
converted (ARG), but also the number of bits in the desired result (SIZE). Notice
that the function declares a local variable “result”, a STD_LOGIC_VECTOR
whose index range is dependent on SIZE. For this reason, SIZE must be a con-
stant or other value that is known when CONV_STD_LOGIC_VECTOR is compiled.
To perform the conversion, the function uses the successive division algorithm
that was described on page 26.

A VHDL procedure is similar to a function, except it does not return a
result. Whereas a function call can be used in the place of an expression, a
procedure call can be used in the place of a statement. VHDL procedures allow
their arguments to be specified with type out or inout, so it is actually possible
to for a procedure to “return” a result. However, we don’t use VHDL procedures
in the rest of this book, so we won’t discuss them further.

function CONV_INTEGER (X: STD_LOGIC_VECTOR) return INTEGER is
  variable RESULT: INTEGER;
begin
  RESULT := 0;
  for i in X'range loop
    RESULT := RESULT * 2;
    case X(i) is
      when '0' | 'L'  => null;
      when '1' | 'H'  => RESULT := RESULT + 1;
      when others     => null;
    end case;
  end loop;
  return RESULT;
end CONV_INTEGER;

Ta b l e  4 - 3 8
VHDL function 
for converting 
STD_LOGIC_VECTOR 
to INTEGER.

function CONV_STD_LOGIC_VECTOR(ARG: INTEGER; SIZE: INTEGER)
    return STD_LOGIC_VECTOR is   
  variable result: STD_LOGIC_VECTOR (SIZE-1 downto 0);
  variable temp: integer;
begin
  temp := ARG;
  for i in 0 to SIZE-1 loop
    if (temp mod 2) = 1 then result(i) := '1';
    else result(i) := '0';
    end if;
    temp := temp / 2;
  end loop;
  return result;
end;

Ta b l e  4 - 3 9
VHDL function 
for converting 
INTEGER to 
STD_LOGIC_VECTOR.

range attribute

procedure
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4.7.5 Libraries and Packages
A VHDL library is a place where the VHDL compiler stores information

about a particular design project, including intermediate files that are used in the
analysis, simulation, and synthesis of the design. The location of the library
within a host computer’s file system is implementation dependent. For a given
VHDL design, the compiler automatically creates and uses a library named
“work”. 

A complete VHDL design usually has multiple files, each containing
different design units including entities and architectures. When the VHDL
compiler analyzes the each file in the design, it places the results in the “work”
library, and it also searches this library for needed definitions, such as other enti-
ties. Because of this feature, a large design can be broken up into multiple files,
yet the compiler will find external references as needed.

Not all of the information needed in a design may be in the “work” library.
For example, a designer may rely on common definitions or functional modules
across a family of different projects. Each project has its own “work” library
(typically a subdirectory within that project’s overall directory), but must also
refer to a common library containing the shared definitions. Even small projects
may use a standard library such as the one containing IEEE standard definitions.
The designer can specify the name of such a library using a library clause at
the beginning of the design file. For example, we can specify the IEEE library:

library ieee;

The clause “library work;” is included implicitly at the beginning of every
VHDL design file.

Specifying a library name in a design gives it access to any previously
analyzed entities and architectures stored in the library, but it does not give
access to type definitions and the like. This is the function of “packages” and
“use clauses,” described next.

A VHDL package is a file containing definitions of objects that can be used
in other programs. The kind of objects that can be put into a package include
signal, type, constant, function, procedure, and component declarations. 

Signals that are defined in a package are “global” signals, available to any
VHDL entity that uses the package. Types and constants defined in a package
are known in any file that uses the package. Likewise, functions and procedures
defined in a package can be called in files that use the package, and components
(described in the next subsection) can be “instantiated” in architectures that use
the package.

A design can “use” a package by including a use clause at the beginning of
the design file. For example, to use all of the definitions in the IEEE standard
1164 package, we would write

use ieee.std_logic_1164.all;

library

library clause

package

use clause
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Here, “ieee” is the name of a library which has been previously given in a
library clause. Within this library, the file named “std_logic_1164” contains
the desired definitions. The suffix “all” tells the compiler to use all of the
definitions in this file. Instead of “all”, you can write the name of a particular
object to use just its definition, for example,

use ieee.std_logic_1164.std_ulogic

This clause would make available just the definition of the std_ulogic type in
Table 4-32 on page 271, without all of the related types and functions. However,
multiple “use” clauses can be written to use additional definitions.

Defining packages is not limited to standards bodies. Anyone can write a
package, using the syntax shown in Table 4-40. All of the objects declared
between “package” and the first “end” statement are visible in any design file
that uses the package; objects following the “package body” keyword are local.
In particular, notice that the first part includes “function declarations,” not defi-
nitions. A function declaration lists only the function name, arguments, and
type, up to but not including the “is” keyword in Table 4-35 on page 274. The
complete function definition is given in the package body and is not visible to
function users.

IEEE VHDL
STANDARDS

VHDL has excellent capabilities for extending its data types and functions. This
is important, because the language’s built-in BIT and BIT_VECTOR actually are
quite inadequate for modeling real circuits that also handle three-state,
unknown, don’t-care, and varying-strength signals. 

As a result, soon after the language was formalized as IEEE standard
1076, commercial vendors began to introduce their own built-in data types to
deal with logic values other than 0 and 1. Of course, each vendor had different
definitions for these extended types, creating a potential “Tower of Babel.” 

To avoid this situation, the IEEE developed the 1164 standard logic
package (std_logic_1164) with a nine-valued logic system that satisfies most
designers’ needs. This was later followed by standard 1076-3, discussed in
Section 5.9.6, which includes several packages with standard types and
operations for vectors of STD_LOGIC components that are interpreted as
signed or unsigned integers. The packages include std_logic_arith,
std_logic_signed, and std_logic_unsigned.

By using IEEE standards, designers can ensure a high degree of portability
and interoperability among their designs. This is increasingly important as the
deployment of very large ASICs necessitates the cooperation not only from
multiple designers, but also from multiple vendors who may each contribute
different pieces of a “system-on-a-chip” design.

function declaration
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4.7.6 Structural Design Elements
We’re finally ready to look at the guts of a VHDL design, the “executable”

portion of an architecture. Recall from Table 4-28 on page 269 that the body of
an architecture is a series of concurrent statements. In VHDL, each concurrent
statement executes simultaneously with the other concurrent statements in the
same architecture body. 

This behavior is markedly different from that of statements in conventional
software programming languages, where statements execute sequentially. Con-
current statements are necessary to simulate the behavior of hardware, where
connected elements affect each other continuously, not just at particular, ordered
time steps. Thus, in a VHDL architecture body, if the last statement updates a
signal that is used by the first statement, then the simulator will go back to that
first statement and update its results according to the signal that just changed. In
fact, the simulator will keep propagating changes and updating results until the
simulated circuit stabilizes; we’ll discuss this in more detail in Section 4.7.9.

VHDL has several different concurrent statements, as well as a mechanism
for bundling a set of sequential statements to operate as a single concurrent state-
ment. Used in different ways, these statements give rise to three somewhat
distinct styles of circuit design and description, which we cover in this and the
next two subsections.

The most basic of VHDL’s concurrent statements is the component state-
ment, whose basic syntax is shown in Table 4-41. Here, component-name is the
name of a previously defined entity that is to be used, or instantiated, within the
current architecture body. One instance of the named entity is created for each

Ta b l e  4 - 4 0
Syntax of a VHDL 
package definition.

package package-name is
  type declarations
  signal declarations
  constant declarations
  component declarations
  function declarations
  procedure declarations
end package-name;
package body package-name is
  type declarations
  constant declarations
  function definitions
  procedure definitions
end package-name;

Ta b l e  4 - 4 1 Syntax of a VHDL component statement.

label: component-name port map(signal1, signal2, ..., signaln);

label: component-name port map(port1=>signal1, port2=>signal2, ..., portn=>signaln);

concurrent statement

instantiate
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component statement that invokes its name, and each instance must be named by
a unique label.

The port map keywords introduce a list that associates ports of the named
entity with signals in the current architecture. The list may be written in either of
two different styles. The first is a positional style; as in conventional program-
ming languages, the signals in the list are associated with the entity’s ports in the
same order that they appear in the entity’s definition. The second is an explicit
style; each of the entity’s ports is connected to a signal using the “=>” operator,
and these associations may be listed in any order.

Before being instantiated in an architecture, a component must be declared
in a component declaration in the architecture’s definition (see Table 4-28 on
page 269). As shown in Table 4-42, a component declaration is essentially the
same as the port declaration part of the corresponding entity declaration—it lists
the name, mode, and type of each of its ports. 

The components used in an architecture may be ones that were previously
defined as part of a design, or they may be part of a library. Table 4-43 is an
example of a VHDL entity and its architecture that uses components, a “prime-
number detector” that is structurally identical to the gate-level circuit in
Figure 4-30(c) on page 224. The entity declaration names the inputs and the
output of the circuit. The declarations section of the architecture defines all of
the signal names and the components that are used internally. The components,
INV, AND2, AND3, and OR4, are predefined in the design environment in which
this example was created and compiled (Xilinx Foundation 1.5, see References).

Note that component statements in Table 4-43 execute concurrently. Even
if the statements were listed in a different order, the same circuit would be
synthesized, and the simulated circuit operation would be the same. 

A VHDL architecture that uses components is often called a structural
description or structural design, because it defines the precise interconnection
structure of signals and entities that realize the entity. In this regard, a pure
structural description is equivalent to a schematic or a net list for the circuit.

In some applications, it is necessary to create multiple copies of a particu-
lar structure within an architecture. For example, we’ll see in Section 5.10.2 that
an n-bit “ripple adder” can be created by cascading n “full adders.” VHDL
includes a generate statement that allows you to create such repetitive struc-
tures using a kind of “for loop,” without having to write out all of the component
instantiations individually. 

component component-name
  port (signal-names : mode signal-type;
        signal-names : mode signal-type;
        ...
        signal-names : mode signal-type);
end component;

Ta b l e  4 - 4 2
Syntax of a 
VHDL component 
declaration.

port map

component declaration

structural description
structural design
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The syntax of a simple iterative generate loop is shown in Table 4-44.
The identifier is implicitly declared as a variable with type compatible with the
range. The concurrent statement is executed once for each possible value of the
identifier within the range, and identifier may be used within the concurrent
statement. For example, Table 4-45 shows how an 8-bit inverter can be created.

The value of a constant must be known at the time that a VHDL program is
compiled. In many applications, it is useful to design and compile an entity and
its architecture while leaving some of its parameters, such as bus width, unspec-
ified. VHDL’s “generic” facility lets you do this. 

One or more generic constants can be defined in an entity declaration with
a generic declaration before the port declaration, using the syntax shown in
Table 4-46. Each of the named constants can be used within the architecture def-
inition for the entity, and the value of the constant is deferred until the entity is
instantiated using a component statement within another architecture. Within
that component statement, values are assigned to the generic constants using a
generic map clause in the same style as the port map clause. Table 4-47 is an
example that combines generic and generate statements to define a “bus
inverter” with a user-specifiable width. Multiple copies of this inverter, each
with a different width, are instantiated in the program in Table 4-48.                   

Ta b l e  4 - 4 3 Structural VHDL program for a prime-number detector.

library IEEE;
use IEEE.std_logic_1164.all;

entity prime is
    port ( N: in STD_LOGIC_VECTOR (3 downto 0);
           F: out STD_LOGIC );
end prime;

architecture prime1_arch of prime is
signal N3_L, N2_L, N1_L: STD_LOGIC;
signal N3L_N0, N3L_N2L_N1, N2L_N1_N0, N2_N1L_N0: STD_LOGIC;
component INV port (I: in STD_LOGIC; O: out STD_LOGIC); end component;
component AND2 port (I0,I1: in STD_LOGIC; O: out STD_LOGIC); end component;
component AND3 port (I0,I1,I2: in STD_LOGIC; O: out STD_LOGIC); end component;
component OR4 port (I0,I1,I2,I3: in STD_LOGIC; O: out STD_LOGIC); end component;
begin
  U1: INV port map (N(3), N3_L);
  U2: INV port map (N(2), N2_L);
  U3: INV port map (N(1), N1_L);
  U4: AND2 port map (N3_L, N(0), N3L_N0);
  U5: AND3 port map (N3_L, N2_L, N(1), N3L_N2L_N1);
  U6: AND3 port map (N2_L, N(1), N(0), N2L_N1_N0);
  U7: AND3 port map (N(2), N1_L, N(0), N2_N1L_N0);
  U8: OR4 port map (N3L_N0, N3L_N2L_N1, N2L_N1_N0, N2_N1L_N0, F);
end prime1_arch;

generic constant
generic declaration

generic map
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label: for identifier in range generate
        concurrent-statement
      end generate;

Ta b l e  4 - 4 4
Syntax of a VHDL 
for-generate loop.

library IEEE;
use IEEE.std_logic_1164.all;

entity inv8 is
    port ( X: in STD_LOGIC_VECTOR (1 to 8);
           Y: out STD_LOGIC_VECTOR (1 to 8) );
end inv8;

architecture inv8_arch of inv8 is
component INV port (I: in STD_LOGIC; O: out STD_LOGIC); end component;
begin
  g1: for b in 1 to 8 generate
        U1: INV port map (X(b), Y(b));
      end generate;
end inv8_arch;

Ta b l e  4 - 4 5
VHDL entity and 
architecture for an 
8-bit inverter.

entity entity-name is
  generic (constant-names : constant-type;
           constant-names : constant-type;
           ...
           constant-names : constant-type);
  port (signal-names : mode signal-type;
        signal-names : mode signal-type;
        ...
        signal-names : mode signal-type);
end entity-name;

Ta b l e  4 - 4 6
Syntax of a VHDL 
generic declaration 
within an entity 
declaration.

library IEEE;
use IEEE.std_logic_1164.all;

entity businv is
    generic (WIDTH: positive);
    port ( X: in STD_LOGIC_VECTOR (WIDTH-1 downto 0);
           Y: out STD_LOGIC_VECTOR (WIDTH-1 downto 0) );
end businv;

architecture businv_arch of businv is
component INV port (I: in STD_LOGIC; O: out STD_LOGIC); end component;
begin
  g1: for b in WID-1 downto 0 generate
        U1: INV port map (X(b), Y(b));
      end generate;
end businv_arch;

Ta b l e  4 - 4 7
VHDL entity and 
architecture for an 
arbitrary-width bus 
inverter.



284 Chapter 4 Combinational Logic Design Principles

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

4.7.7 Dataflow Design Elements
If component statements were VHDL’s only concurrent statements, then

VHDL would be little more than a strongly typed, hierarchical net-list descrip-
tion language. Several additional concurrent statements allow VHDL to describe
a circuit in terms of the flow of data and operations on it within the circuit. This
style is called a dataflow description or dataflow design.

Two additional concurrent statements used in dataflow designs are shown
in Table 4-49. The first of these is the most often used and is called a concurrent
signal-assignment statement. You can read this as “signal-name gets expres-
sion.” Because of VHDL’s strong typing, the type of expression must be
compatible with that of signal-name. In general, this means that either the types
must be identical or expression’s type is a subtype of signal-name’s. In the case
of arrays, both the element type and the length must match; however, the index
range and direction need not match. 

Ta b l e  4 - 4 8
VHDL entity and 
architecture that use 
the arbitrary-width 
bus inverter.

library IEEE;
use IEEE.std_logic_1164.all;

entity businv_example is
    port ( IN8: in STD_LOGIC_VECTOR (7 downto 0);
           OUT8: out STD_LOGIC_VECTOR (7 downto 0);
           IN16: in STD_LOGIC_VECTOR (15 downto 0);
           OUT16: out STD_LOGIC_VECTOR (15 downto 0);
           IN32: in STD_LOGIC_VECTOR (31 downto 0);
           OUT32: out STD_LOGIC_VECTOR (31 downto 0) );
end businv_example;

architecture businv_ex_arch of businv_example is
component businv
    generic (WIDTH: positive);
    port ( X: in STD_LOGIC_VECTOR (WIDTH-1 downto 0);
           Y: out STD_LOGIC_VECTOR (WIDTH-1 downto 0) );
end component;
begin
U1: businv generic map (WIDTH=>8) port map (IN8, OUT8);
U2: businv generic map (WIDTH=>16) port map (IN16, OUT16);
U3: businv generic map (WIDTH=>32) port map (IN32, OUT32);
end businv_ex_arch;

Ta b l e  4 - 4 9
Syntax of VHDL 
concurrent signal-
assignment statements.

signal-name <= expression;

signal-name <= expression when boolean-expression else
             expression when boolean-expression else
              ...
             expression when boolean-expression else
             expression;

dataflow description
dataflow design
concurrent signal-

assignment statement
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Table 4-50 shows an architecture for the prime-number detector entity
(Table 4-43 on page 282) written in dataflow style. In this style, we don’t show
the explicit gates and their connections; rather, we use VHDL’s built-in and, or,
and not operators. (Actually, these operators are not built-in for signals of type
STD_LOGIC, but they are defined and overloaded by the IEEE 1164 package.)
Note that the not operator has the highest precedence, so no parentheses are
required around subexpressions like “not N(3)” to get the intended result.

We can also use the second, conditional form of the concurrent signal-
assignment statement, using the keywords when and else as shown in
Table 4-49. Here, a boolean-expression combines individual boolean terms
using VHDL’s built-in boolean operators such as and, or, and not. Boolean
terms are typically boolean variables or results of comparisons using relational
operators =,  /= (not equal),  >,  >=,  <, and  <=.

 Table 4-51 is an example using conditional concurrent assignment state-
ments. Each of the comparisons of a individual STD_LOGIC bit such as N(3) is
made against a character literal '1' or '0', and returns a value of type boolean.
These comparison results are combined in the boolean expression between the
when and else keywords in each statement. The else clauses are generally
required; the combined set of conditions in a single statement should cover all
possible input combinations. 

Another kind of concurrent assignment statement is the selected signal
assignment, whose syntax is shown in Table 4-52. This statement evaluates the
given expression, and when the value matches one of the choices, it assigns the
corresponding signal-value to signal-name. The choices in each when clause

architecture prime2_arch of prime is
signal N3L_N0, N3L_N2L_N1, N2L_N1_N0, N2_N1L_N0: STD_LOGIC;
begin
  N3L_N0     <= not N(3)                           and N(0);
  N3L_N2L_N1 <= not N(3) and not N(2) and     N(1)         ;
  N2L_N1_N0  <=              not N(2) and     N(1) and N(0);
  N2_N1L_N0  <=                  N(2) and not N(1) and N(0);
  F <= N3L_N0 or N3L_N2L_N1 or N2L_N1_N0 or N2_N1L_N0;
end prime2_arch;

Ta b l e  4 - 5 0
Dataflow VHDL 
architecture for the 
prime-number 
detector.

architecture prime3_arch of prime is
signal N3L_N0, N3L_N2L_N1, N2L_N1_N0, N2_N1L_N0: STD_LOGIC;
begin
  N3L_N0     <= '1' when N(3)='0' and N(0)='1' else '0';
  N3L_N2L_N1 <= '1' when N(3)='0' and N(2)='0' and N(1)='1' else '0';
  N2L_N1_N0  <= '1' when N(2)='0' and N(1)='1' and N(0)='1' else '0';
  N2_N1L_N0  <= '1' when N(2)='1' and N(1)='0' and N(0)='1' else '0';
  F <= N3L_N0 or N3L_N2L_N1 or N2L_N1_N0 or N2_N1L_N0;
end prime3_arch;

Ta b l e  4 - 5 1
Prime-number 
detector architecture 
using conditional 
assignments.

conditional signal- 
assignment statement

when

else

relational operators
=, /=, >, >=, <, <=

selected signal- 
assignment statement
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may be a single value of expression or a list of values separated by vertical bars
(|). The choices for the entire statement must be mutually exclusive and all
inclusive. The keyword others can be used in the last when clause to denote all
values of expression that have not yet been covered.

Table 4-53 is an architecture for the prime-number detector that uses a
selected signal-assignment statement. All of the choices for which F is '1' could
have been written in a single when clause, but multiple clauses are shown just for
instructional purposes. In this example, the selected signal-assignment state-
ment reads somewhat like a listing of the on-set of the function F.

We can modify the previous architecture slightly to take advantage of the
numeric interpretation of N in the function definition. Using the CONV_INTEGER

function that we defined previously, Table 4-54 writes the choices in terms of
integers, which we can readily see are prime as required. We can think of this
version of the architecture is as a “behavioral” description, because it describes
the desired function in a way that its behavior is quite evident. 

Ta b l e  4 - 5 2
Syntax of VHDL 
selected signal-
assignment statement.

with expression select
  signal-name <= signal-value when choices,
                signal-value when choices,
                ...
                signal-value when choices;

Ta b l e  4 - 5 3
Prime-number 
detector architecture 
using selected signal 
assignment.

architecture prime4_arch of prime is
begin
  with N select
    F <= '1' when "0001",
         '1' when "0010",
         '1' when "0011" | "0101" | "0111",
         '1' when "1011" | "1101",
         '0' when others;
end prime4_arch;

others

COVERING
ALL THE

CASES

Conditional and selected signal assignments require all possible conditions to be
covered. In a conditional signal assignment, the final “else expression” covers
missing conditions. In a selected signal assignment, “others” can be used in the
final when clause to pick up the remaining conditions.

In Table 4-53, you might think that instead of writing “others” in the
final when clause, we could have written the nine remaining 4-bit combinations,
"0000", "0100", and so on.  But that’s not true! Remember that STD_LOGIC is
a nine-valued system, so a 4-bit STD_LOGIC_VECTOR actually has 94 possible
values. So “others” in this example is really covering 6,554 cases!
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4.7.8 Behavioral Design Elements
As we saw in the last example, it is sometimes possible to directly describe

a desired logic circuit behavior using a concurrent statement. This is a good
thing, as the ability to create a behavioral design or behavioral description is one
of the key benefits of hardware description languages in general and VHDL in
particular. However, for most behavioral descriptions, we need to employ some
additional language elements described in this subsection.

VHDL’s key behavioral element is the “process.” A process is a collection
of “sequential” statements (described shortly) that executes in parallel with other
concurrent statements and other processes. Using a process, you can specify a
complex interaction of signals and events in a way that executes in essentially
zero simulated time during simulation, and that gives rise to a synthesized
combinational or sequential circuit that performs the modeled operation directly.

A VHDL process statement can be used anywhere that a concurrent state-
ment can be used. A process statement is introduced by the keyword process

and has the syntax shown in Table 4-55 Since a process statement is written
within the scope of an enclosing architecture, it has visibility of the types,
signals, constants, functions, and procedures that are declared or are otherwise
visible in the enclosing architecture. However, you can also define types,
signals, constants, functions, and procedures that are local to the process. 

Note that a process may not declare signals, only “variables.” A VHDL
variable keeps track of the state within a process, and is not visible outside of the
process. Depending on its use, it may or may not give rise to a corresponding
signal in a physical realization of the modeled circuit. The syntax for defining a

architecture prime5_arch of prime is
begin
  with CONV_INTEGER(N) select
    F <= '1' when 1 | 2 | 3 | 5 | 7 | 11 | 13,
         '0' when others;
end prime5_arch;

Ta b l e  4 - 5 4
A more behavioral 
description of the 
prime-number 
detector.

process (signal-name, signal-name, ..., signal-name)
  type declarations
  variable declarations
  constant declarations
  function definitions
  procedure definitions
begin
  sequential-statement
  ...
  sequential-statement
end process;

Ta b l e  4 - 5 5
Syntax of a VHDL 
process statement.

behavioral design
behavioral description

process

process statement
process

variable
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variable within a process is similar to the syntax for a signal declaration within
an architecture, except that the keyword variable is used:

variable variable-names : variable-type;

A VHDL process is always either running or suspended. The list of signals
in the process definition, called the sensitivity list, determines when the process
runs. A process initially is suspended; when any variable in its sensitivity list
changes value, the process resumes execution, starting with its first sequential
statement and continuing until the end. If any signal in the sensitivity list change
value as a result of running the process, it runs again. This continues until the
process runs without any of these signals changing value. In simulation, all of
this happens in zero simulated time.

Upon resumption, a properly written process will suspend after one or a
few runs. However, it is possible to write an incorrect process that never
suspends. For example, consider a process with just one sequential statement,
“X <= not X” and a sensitivity list of “(X)”. Since X changes on every pass, the
process will run forever in zero simulated time, not very useful! In practice,
simulators have safeguards that can normally detect such unwanted behavior,
and that terminate the misbehaving process after a thousand or so passes.

The sensitivity list is optional; a process without a sensitivity list starts
running at time zero in simulation. We’ll look at the applications of such pro-
cesses in \secref{VHDLseqproc}.

VHDL has several kinds of sequential statements. The first is a sequential
signal-assignment statement; this has the same syntax as the concurrent version
(signal-name <= expression;), but it occurs within the body of a process rather
than an architecture. An analogous statement for variables is the variable-
assignment statement, which has the syntax “variable-name := expression;”.
Notice that a different assignment operator, :=, is used for variables. 

For instruction purposes, the dataflow architecture of the prime-number
detector in Table 4-50 is rewritten as a process in Table 4-56. Notice that we’re
still working off of the same original entity declaration of prime that appeared in

Ta b l e  4 - 5 6
Process-based 
dataflow VHDL 
architecture for the 
prime-number 
detector.

architecture prime6_arch of prime6 is
begin
  process(N)
    variable N3L_N0, N3L_N2L_N1, N2L_N1_N0, N2_N1L_N0: STD_LOGIC;
  begin
    N3L_N0     := not N(3)                           and N(0);
    N3L_N2L_N1 := not N(3) and not N(2) and     N(1)         ;
    N2L_N1_N0  :=              not N(2) and     N(1) and N(0);
    N2_N1L_N0  :=                  N(2) and not N(1) and N(0);
    F <= N3L_N0 or N3L_N2L_N1 or N2L_N1_N0 or N2_N1L_N0;
  end process;
end prime6_arch;

variable

running process
suspended process
sensitivity list

sequential signal- 
assignment statement

variable- assignment 
statement

:=
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Table 4-43. Within the new architecture (prime6_arch), we have just one
concurrent statement, which is a process. The process sensitivity list contains
just N, the primary inputs of the desired combinational logic function. The AND-
gate outputs must be defined as variables rather than signals, since signal defini-
tions are not allowed within a process. Otherwise, the body of the process is very
similar to that of the original architecture. In fact, a typical synthesis tool would
probably create the same circuit from either description.

Other sequential statements, beyond simple assignment, can give us more
creative control in expressing circuit behavior. The if statement, with the syntax
shown in Table 4-57, is probably the most familiar of these. In the first and
simplest form of the statement, a boolean-expression is tested, and a sequential-
statement is executed if the expression’s value is true. In the second form,

if boolean-expression then sequential-statement
end if;

if boolean-expression then sequential-statement
else sequential-statement
end if;

if boolean-expression then sequential-statement
elsif boolean-expression then sequential-statement
...
elsif boolean-expression then sequential-statement
end if;

if boolean-expression then sequential-statement
elsif boolean-expression then sequential-statement
...
elsif boolean-expression then sequential-statement
else sequential-statement
end if;

Ta b l e  4 - 5 7
Syntax of a VHDL
if statement.

WEIRD
BEHAVIOR

Remember that the statements within a process are executed sequentially.
Suppose that for some reason we wrote the last statement in Table 4-43 (the
signal assignment to F) as the first. Then we would see rather weird behavior
from this process.

The first time the process was run, the simulator would complain that the
values of the variables were being read before any value was assigned to them.
On subsequent resumptions, a value would be assigned to F based on the
previous values of the variables, which are remembered while the process is
suspended. New values would then be assigned to the variables and remembered
until the next resumption. So the circuit’s output value would always be one
input-change behind.

if statement
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we’ve added an “else” clause with another sequential-statement that’s executed
if the expression’s value is false.

To create nested if-then-else statements, VHDL uses a special keyword
elsif, which introduces the “middle” clauses. An elsif clause’s sequential-
statement is executed if its boolean-expression is true and all of the preceding
boolean-expressions were false. The optional final else-clause’s sequential-
statement is executed if all of the preceding boolean-expressions were false. 

Table 4-58 is a version of the prime-number-detector architecture that uses
an if statement. An local variable NI is used to hold a converted, integer version
of the input N, so that the comparisons in the if statement can be written using
integer values.

The boolean expressions in Table 4-58 are non-overlapping, that is, only
one of them is true at a time. For this application, we really didn’t need the full
power of nested if statements. In fact, a synthesis engine might create a circuit
that evaluates the boolean expressions in series, with slower operation than
might otherwise be possible. When we need to select among multiple alterna-
tives based on the value of just one signal or expression, a case statement is
usually more readable and may yield a better synthesized circuit.

Table 4-59 shows the syntax of a case statement. This statement evaluates
the given expression, finds a matching value in one of the choices, and executes
the corresponding sequential-statements. Note that one or more sequential state-
ments can be written for each set of choices. The choices may take the form of a
single value or multiple values separated by vertical bars (|). The choices must
be mutually exclusive and include all possible values of expression’s type; the
keyword others can be used as the last choices to denote all values that have not
yet been covered.

Ta b l e  4 - 5 8
Prime-number-
detector architecture 
using an if statement.

architecture prime7_arch of prime is
begin
  process(N)
    variable NI: INTEGER;
  begin
    NI := CONV_INTEGER(N);
    if NI=1 or NI=2 then F <= '1';
    elsif NI=3 or NI=5 or NI=7 or NI=11 or NI=13 then F <= '1';
    else F <= '0';
    end if;
  end process;
end prime7_arch;

Ta b l e  4 - 5 9
Syntax of a VHDL
case statement.

case expression is
  when choices => sequential-statements
  ...
  when choices => sequential-statements
end case;

else

elsif

case statement
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Table 4-60 is yet another architecture for the prime-number detector, this
time coded with a case statement. Like the concurrent version, the select

statement in Table 4-54 on page 287, the case statement makes it very easy to
see the desired functional behavior.

Another important class of sequential statements are the loop statements,
The simplest of these has the syntax shown in Table 4-61 and creates an infinite
loop. Although infinite loops are undesirable in conventional software program-
ming languages, we’ll show in \secref{seqVHDL} how such a loop can be very
useful in hardware modeling.

A more familiar loop, one that we’ve seen before, is the for loop, with the
syntax shown in Table 4-62. Note that the loop variable, identifier, is declared
implicitly by its appearance in the for loop, and has the same type as range. This
variable may be used within the loop’s sequential statements, and it steps
through all of the values in range, from left to right, one per iteration. 

Two more useful sequential statements that can be executed within a loop
are “exit” and “next”. When executed, exit transfers control to the statement
immediately following the loop end. On the other hand, next causes any
remaining statements in the loop to be bypassed, and begins the next iteration of
the loop.   

architecture prime8_arch of prime is
begin
  process(N)
  begin
    case CONV_INTEGER(N) is
      when 1 => F <= '1';
      when 2 => F <= '1';
      when 3 | 5 | 7 | 11 | 13 => F <= '1';
      when others => F <= '0';
    end case;
  end process;
end prime8_arch;

Ta b l e  4 - 6 0
Prime-number-
detector architecture 
using a case statement.

loop 
  sequential-statement
  ...
  sequential-statement
end loop;

Ta b l e  4 - 6 1
Syntax of a basic 
VHDL loop 
statement.

for identifier in range loop 
  sequential-statement
  ...
  sequential-statement
end loop;

Ta b l e  4 - 6 2
Syntax of a VHDL 
for loop.

loop statement

for loop

exit statement
next statement
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Our good old prime-number detector is coded one more time in Table 4-63,
this time using a for loop. The striking thing about this example is that it is truly
a behavioral description—we have actually used VHDL compute whether the
input N is a prime number. We’ve also increased the size of N to 16 bits, just to
emphasize the fact that we were able to create a compact model for the circuit
without having to explicitly list hundreds of primes.

Ta b l e  4 - 6 3
Prime-number-
detector architecture 
using a for statement.

library IEEE;
use IEEE.std_logic_1164.all;

entity prime9 is
    port ( N: in STD_LOGIC_VECTOR (15 downto 0);
           F: out STD_LOGIC );
end prime9;

architecture prime9_arch of prime9 is
begin
  process(N)
  variable NI: INTEGER;
  variable prime: boolean;
  begin
    NI := CONV_INTEGER(N);
    prime := true;
    if NI=1 or NI=2 then null; -- take care of boundary cases
    else for i in 2 to 253 loop
           if NI mod i = 0 then
             prime := false; exit;
           end if;
         end loop;
    end if;
    if prime then F <= '1'; else F <= '0'; end if;
  end process;
end prime9_arch;

BAD DESIGN Table 4-63 has a good example of a for loop, but is a bad example of how to
design a circuit. Although VHDL is a powerful programming language, design
descriptions that use its full power may be inefficient or unsynthesizable.

The culprit in Table 4-63 is the mod operator. This operation requires an
integer division, and most VHDL tools are unable to synthesize division circuits
except for special cases, such as division by a power of two (realized as a shift).

Even if the tools could synthesize a divider, we wouldn’t want specify a
prime number detector in this way. The description in Table 4-63 implies a com-
binational circuit, and the tools would have to create 252 combinational
dividers, one for each value of i, to “unroll” the for loop and realize the circuit!
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The last kind of loop statement is the while loop, with the syntax shown
in Table 4-64. In this form, boolean-expression is tested before each iteration of
the loop, and the loop is executed only of the value of the expression is true.

We can use processes to write behavioral descriptions of both combina-
tional and sequential circuits. Many more examples of combinational-circuit
descriptions appear in the VHDL subsections of Chapter 5. A few additional
language features are needed to describe sequential circuits; these are described
in \secref{SeqVHDL}, and sequential examples appear in the VHDL subsec-
tions of Chapter 8.

4.7.9 The Time Dimension and Simulation
None of the examples that we’ve dealt with so far model the time dimension of
circuit operation—everything happens in zero simulated time. However, VHDL
has excellent facilities for modeling the time, and it is indeed another significant
dimension of the language. In this book, we won’t go into detail on this subject,
but we’ll introduce just a few ideas here.

VHDL allows you to specify a time delay using the keyword after in any
signal assignment statement, including sequential, concurrent, conditional and
selected assignments. For example, in the inhibit-gate architecture of Table 4-26
on page 267 you could write

Z <= '1' after 4 ns when X='1' and Y='0' else '0' after 3 ns;

This allows you to model an inhibit gate that has 4 ns of delay on a 0-to-1 output
transition, and only 3 ns on a 1-to-0 transition. In typical ASIC design environ-
ments, the VHDL models for all of the low-level components in the component
library include such delay parameters. Using these estimates, a VHDL simulator
can predict the approximate timing behavior of a larger circuit that uses these
components.

Another way to invoke the time dimension is with wait, a sequential state-
ment. This statement can be used to suspend a process for a specified time
period. Table 4-65 is an example program that uses wait to create simulated
input waveforms to test the operation of the inhibit gate for four different input
combinations at 10-ns time steps. 

Once you have a VHDL program that whose syntax and semantics are cor-
rect, you can use a VHDL simulator to observe its operation. Although we won’t
go into great detail, it’s useful to have a basic understanding of how such a sim-
ulator works.

while boolean-expression loop 
  sequential-statement
  ...
  sequential-statement
end loop;

Ta b l e  4 - 6 4
Syntax of a VHDL 
while loop.

after

wait
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Simulator operation begins at a simulated time of zero. At this time, the
simulator initializes all signals to a default value (which you shouldn’t depend
on!). It also initializes any signals or variables for which initial values have been
declared explicitly (we didn’t show you how to do this). Next, the simulator
begins the execution of all the processes and concurrent statements in the design.

Of course, the simulator can’t really simulate all of the processes and
concurrent statements simultaneously, but it can pretend that it does, using a
time-based “event list” and a “signal-sensitivity matrix.” Note that each concur-
rent statement is equivalent to one process. 

At time zero, all of the processes are scheduled for execution, and one of
these is selected. All of its sequential statements are executed, including any
looping behavior that is specified. When the execution of this process is com-
pleted, another one is selected, and so on, until all of the processes have been
executed. This completes one simulation cycle.

During its execution, a process may assign new values to signals. The new
values are not assigned immediately; rather, they are placed on the event list and
scheduled to become effective at a certain time. If the assignment has an explicit
time associated with it (for example, using an after clause), then it is scheduled
to occur at that time. Otherwise, it is supposed to occur “immediately;” however,
it is actually scheduled for the current time plus one “delta delay.” The delta
delay is an infinitesimally short time, shorter than any simulated circuit delay,
but long enough to ensure that the new signal value is assigned after all of the
processes have executed in the current simulation cycle. This ensures that all
processes will execute once before any signal changes are propagated.

Ta b l e  4 - 6 5
Using the VHDL wait
statement to generate 
input waveforms in a 
test bench program.

entity InhibitTestBench is   
end InhibitTB_arch;

architecture InhibitTB_arch of InhibitTestBench is
component Inhibit port (X,Y: in BIT; Z: out BIT); end component;
signal XT, YT, ZT: BIT;
begin
  U1: Inhibit port map (XT, YT, ZT);
  process
  begin
    XT <= '0'; YT <= '0';
    wait for 10 ns;
    XT <= '0'; YT <= '1';
    wait for 10 ns;
    XT <= '1'; YT <= '0';
    wait for 10 ns;
    XT <= '1'; YT <= '1';
    wait; -- this suspends the process indefinitely
  end process;     
end InhibitTB_arch;

simulation cycle

event list

delta delay
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After a simulation cycle completes, the event list is scanned for the signal
or signals that change at the next earliest time on the list. The “simulation time”
is advanced to this time, and the scheduled signal changes are made. Various
processes may be sensitive to the changing signals. The signal-sensitivity matrix
indicates, for each signal, which processes have that signal in their sensitivity
list. (The process equivalent of a concurrent statement has all of its control and
data signals in its sensitivity list.) All of the processes that are sensitive to a
signal that changed at the current simulation time are scheduled for execution in
the next simulation cycle, which now begins.

The simulator’s two-phase operation of a simulation cycle followed by
advancing the simulation time and making scheduled signal assignments goes
on indefinitely, until the event list is empty. At this point, the simulation is
complete.

The event-list mechanism makes it possible to simulate the operation of
concurrent processes even though the simulator runs on a single computer with a
single thread of execution. And the delta-delay mechanism ensures correct
operation even though a process or set of processes may require multiple execu-
tions, spanning several delta delays, before changing signals settle down to a
stable value. This mechanism is also used to detect runaway processes (such as
“X <= not X”); if a thousand simulation cycles occur over a thousand delta delays
without advancing simulation time by any “real” amount, it’s most likely that
something’s amiss.

4.7.10 Synthesis
As we mentioned at the beginning of this section, VHDL was originally invented
as a logic circuit description and simulation language and was later adapted to
synthesis. The language has many features and constructs that cannot be synthe-
sized. However, the subset of the language and the style of programs that we’ve
presented in this section are generally synthesizable by most tools.

Still, the code that you write can still have a big effect on the quality of the
synthesized circuits that you get. A few examples are listed below:

• “Serial” control structures like if-elsif-elsif-else can result in a cor-
responding serial chain of logic gates to test conditions. It’s better to use a
case or select statement if the conditions are mutually exclusive.

• Loops in processes are generally “unwound” to create multiple copies of
combinational logic to execute the statements in the loop. If you want to
use just one copy of the combinational logic in a sequence of steps, then
you have to design a sequential circuit, as discussed in later chapters.

• When using conditional statements in a process, failing to state an outcome
for some input combination will cause the compiler to create a “latch” to
hold the old value of a signal that might otherwise change. Such latches are
generally not intended.
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In addition, some language features and constructs may just be unsynthesizable,
depending on the tool. Naturally, you have to consult the documentation to find
out what’s disallowed, allowed, and recommended for a particular tool.

For the foreseeable future, digital designers who use synthesis tools will
need to pay reasonably close attention to their coding style in order to obtain
good results. And for the moment, the definition of “good coding style” depends
somewhat on both the synthesis tool and the target technology. The examples in
the rest of this book, while syntactically and semantically correct, hardly scratch
the surface of coding methods for large HDL-based designs. The art and practice
of large HDL-based hardware design is still very much evolving.
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