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Table 5-56
VHDL program that
allows adder sharing.
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library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity vaddshr is
port (
A, B, C, D: in SIGNED (7 downto 0);
SEL: in STD_LOGIC;
S: out SIGNED (7 downto 0)
);

end vaddshr;

architecture vaddshr_arch of vaddshr is
begin

S <= A + B when SEL = '1'
end vaddshr_arch;

else C + D;

one’s output with a multiplexer, the synthesis engine can build just one adder and
select its inputs using multiplexers, potentially creating a smalrab\circuit.

*5.11 Combinational Multipliers

*5.11.1 Combinational Multiplier Structures

In Section 2.8, we outlined an algorithm that usesifts and adds to multiply
n-bit binary numbers. Although the shift-and-add algorithm emulates the way
that we do paper-and-pencil multiplication of decimal numbers, there is nothing
inherently “sequential” or “time dependent” about multiplication. That is, given
two n-bit input wordsX andy, it is possible to write a truth table that expresses
the Zr-bit productP = XLY as acombinationalfunction ofX andY. A combina-
tional multiplieris a logic circuit with such a truth table.

Most approaches to combinational multiplication are based on the paper-
and-pencil shift-and-add algorithm. Figure 5-97 illustrates the basic idea for an
8x8 multiplier for two unsigned integers, multiplicald= X;XgX5X4X3XoX1Xo and
multiplier Y = y7ygYsYaYaYoY1Yo- We call each row product componenéa shifted

combinational
multiplier

product component

[yox7 | vo%s | Yo%s | Yoxa | Yoxs | Yoxe [ Yoxa | yoxo |
| Y1X7 | Y1X6 | Y1X5 | Y1X4 | Y1X3 | Y1Xo | Y1Xu | Y1Xo |
| YoX7 | Y2Xs | Y2Xs | Y2Xa | Y2X3 | ¥2Xo | ¥2X1 | Y2Xo |
| ¥Y3X7 | Y3Xe | ¥3Xs | ¥Y3Xa | ¥Y3X3 | ¥3X2 | ¥3X1 | ¥Y3Xo |
| YaX7 | YaXe | YaXs | YaXq | YaX3 | YaXo | YaX1 | YaXo |
[ ex7 | ve¥s | ¥o%s | Vexa | vsa | Voo | voxa [ vsxo |
[ 67 | Ve%e | V%5 | Yexa | Voxa | voxe | vexa | vexo |
+ [y ]y [ vk | voxa | yoxa | yoe [ voxa [ voxo |

Figure 5-97
Partial products in an
8 x 8 multiplier.

|p15|p14|p13|p12|p11|p10| P9|Ps|P7|Pe|P5|P4|P3|F32|P1|Po|
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multiplicand that is multiplied by 0 or 1 depending on the corresponding multi-
plier bit. Each small box represents one product-componegipithe logical
AND of multiplier bity; and multiplicand bik. The producP = p;gp;4. ..PoP1Po
has 16 bits and is obtained by adding together all the product components.
Figure 5-98 shows one way to add up the product components. Here, the
product-component bits have been spread out to make space, and each “+” box
is a full adder equivalent to Figure 5-86(c) on page 393. The carries in each row
of full adders are connected to make an 8-bit ripple adder. Thus, the first ripple
adder combines the first two product components to product the first partial
product, as defined in Section 2.8. Subsequent adders combine each partial
product with the next product component.
It is interesting to study the propagation delay of the circuit in Figure 5-98.
In the worst case, the inputs to the least significant adger #ndy;Xy) can
affect the MSB of the producp{s). If we assume for simplicity that the delays
from any input to any output of a full adder are equaltsayhen the worst case
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path goes through 20 adders and its delaytis;20the delays are different, then
the answer depends on the relative gielaee Exercise 5.88.

sequential multiplier Sequential multipliersise a single adder and a register to accumulate the
partial products. The partial-product register is initialized to the first product
component, and for amxn-bit multiplication,n-1 steps are taken and the adder
is usedh—1 times, once for each of the remainm. product components to be
added to the partial-product register.

carry-save addition Some sequential multipliers use a trick cabbadry-save additiorio speed
up multiplication. The idea is to break the carry chain of the ripple adder to
shorten the delay of each addition. This is done by applying the carry output
from biti during steg to the carry input for bit+1 during thenextstep,j+1.
After the last product component is added, one more step is needed in which the
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carries are toked up in the usual way and allowed to ripple from the least to the
most significant bit.

The combinational equivalent of arx8 multiplier using carry-save addi-
tion is shown in Figure 5-99. Notice that theerny out of each full adder in the
first seven rows is connected to an input of an atdééww it. Carries in the
eighth row of full addersare @nnected to ate a converdnal ripple adder.
Although this adder uses exactly the same amount of logic as the previous one
(64 2-inputAND gates and 56 full adders), its propagation delay is substantially
shorter. Its worst-case delay path goes through only 14 full adders. The delay can
be further improved by usingcarry lookahead adder for the last row.

The regular structure of combinational multipliers make them ideal for
VLSI and ASIC realization. The importance of fast multiplication in micro-
processors, digital video, and many other applications has led to much study and
development of even better structures and circuits for combinational multipliers;
see the References.

*5.11.2 Multiplication in ABEL and PLDs
ABEL provides a multiplication operater but it can be used only with individ-
ual signals, numbers, or special constants, not with sets. Thus, ABEL cannot
synthesize a multiplier circuit from a single equation liRe="X*Y.”

Still, you can use ABEL to specify a combinational multiplier if yoeat
it down into smaller pieces. For example, Table 5-57 shows #igrdef a 4«4
unsigned multiplier following the same general structure as Figure 5-97 on page
page 408. Expressioreye used to define the fourgaluct componentC1,
PC2, PC3, andPC4, which are then added in tlkgquations section of the pro-
gram. This does not generate an array of full adders as in Figure 5-98 or 5-99.
Rather, the ABEL compiler will dutifully crunch the addition equation to pro-

module mulé4x4 Table 5-57

title '4x4 Combinational Multiplier' ABEL program for a
4x4 combinational

X3..X0, Y3..Y0 pin; " multiplicand, multiplier nuﬂﬁphen

P7..PO pin istype 'com'; " product

P = [P7..P0];

PC1 = YO & [0, O, O, 0,X3,X2,X1,X0];

PC2 = Y1 & [0, O, 0,X3,X2,X1,X0, 0];

PC3 = Y2 & [0, 0,X3,X2,X1,X0, 0, 0];

PC4 = Y3 & [0,X3,X2,X1,X0, 0, 0, 0];

equations

P = PC1 + PC2 + PC3 + PC4;

end mulédx4
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Figure 5-100
VHDL variable names

for the 8 x 8 multiplier.

PCS(6)(7)

PCS(7)(7)

duce a minimal sum for each of the eight product output bits. Surprisingly, the
worst-caseutput,P4, has only 36 product terms, a little high battanly real-
izable in two passes through a PLD.

*5.11.3 Multiplication in VHDL
VHDL is rich enough to express multiplication in a number of different ways;
we’ll save the best for last.

Table 5-58 is a behavioral VHDL program that mimics the multiplier
structure of Figure 5-99. In order to represent the internal signals in the figure,
the program defines a new data typeray8x8, which is a two-dimensional
array ofSTD_LOGIC (recall thatSTD_LOGIC_VECTOR is a one-dimensionaliay
of STD_LOGIC). VariablePC is declared as a such an array to hold tloelyct-
component bits, and variablegS andPCC are similar arrays tioold the sum and
carry outputs of the mainreay of full adders. One-dimsional array®As and
RAC hold the sum and carry outputs of the ripple adder. Figure 5-100 shows the
variable naming and numbering scheme. Integer variabéesl j are used as
loop indices for rows and columns, respectively.

The program attempts to illustrate the logic gates that would be used in a
faithful realization of Figure 5-99, even though a synthesizer could legitimately
createquite a different structure from this behavioral program. If you want to
control the structure, then you must use structural VHDL, as we’ll show later.

In the program, the first, nesteédr statement performs @4D operations
to obtain the product-component bits. The n&xt loop initializes boundary
conditions at the top of the multiplier, using the notion of row-0 “virtual” full

PCS(0)() YoXe yoa | [Yos| o] || [V
Y27 Y% @ vl
PCS(1)(7) 0 0 0 0 0 0
PCC(1)(6) +|"+|‘J+|‘J+|‘J+|‘J+|‘J+yj>
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library IEEE; Table 5-58
use IEEE.std_logic_1164.all; Behavioral VHDL
program for an 8x8
entity vmul8x8p is combinational
port ( X: in STD_LOGIC_VECTOR (7 downto 0); multiplier.

Y: in STD_LOGIC_VECTOR (7 downto O);
P: out STD_LOGIC_VECTOR (15 downto 0) );
end vmul8x8p;

architecture vmul8x8p_arch of vmul8x8p is
function MAJ (I1, I2, I3: STD_LOGIC) return STD_LOGIC is

begin

return ((I1 and I2) or (I1 and I3) or (I2 and I3));

end MAJ;
begin
process (X, Y)
type array8x8 is array (0 to 7) of STD_LOGIC_VECTOR (7 downto O0);

variable PC: array8x8; -- product component bits
variable PCS: array8x8; —- full-adder sum bits
variable PCC: array8x8; -- full-adder carry output bits
variable RAS, RAC: STD_LOGIC_VECTOR (7 downto 0); -- ripple adder sum
begin - and carry bits
for i in 0 to 7 loop for j in O to 7 loop
PC(1)(j) := Y(i) and X(j); -- compute product component bits

end loop; end loop;
for j in O to 7 loop

PCS(0) (j) := PC(0)(j); -- initialize first-row "virtual"
PCC(0) (j) := '0'; -— adders (not shown in figure)
end loop;
for i in 1 to 7 loop -- do all full adders except last row
for j in O to 6 loop
PCS(1) (j) := PC(i)(j) xor PCS(i-1) (j+1) xor PCC(i-1)(j);
PCC(1) (j) := MAJ(PC(1)(j), PCS(i-1)(j+1), PCC(i-1)(j));
PCS(i) (7) := PC(i)(7); -- leftmost "virtual" adder sum output
end loop;
end loop;
RAC(0) := '0';
for i in O to 6 loop -- final ripple adder

RAS(i) := PCS(7) (i+1) =xor PCC(7) (i) xor RAC(i);
RAC(i+1) := MAJ(PCS(7) (i+1), PCC(7) (i), RAC(i));

end loop;
for i in 0 to 7 loop
P(i) <= PCS(i)(0); -- first 8 product bits from full-adder sums
end loop;
for i in 8 to 14 loop
P(i) <= RAS(i-8); -- next 7 bits from ripple-adder sums
end loop;
P(15) <= RAC(7); -- last bit from ripple-adder carry

end process;
end vmul8x8p_arch;
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Table 5-59
Structural VHDL
architecture for an
8x%8 combinational
multiplier.

architecture vmul8x8s_arch of vmul8x8s is
component AND2
port( I0, I1: in STD_LOGIC;
0: out STD_LOGIC );
end component;
component XOR3
port( I0, I1, I2: in STD_LOGIC;
0: out STD_LOGIC );
end component;
component MAJ -- Majority function, 0 = IO*I1 + IO*I2 + I1xI2
port( I0, I1, I2: in STD_LOGIC;
0: out STD_LOGIC );
end component;

type array8x8 is array (0 to 7) of STD_LOGIC_VECTOR (7 downto 0);

signal PC: array8x8; -- product-component bits
signal PCS: array8x8; —— full-adder sum bits
signal PCC: array8x8; -- full-adder carry output bits
signal RAS, RAC: STD_LOGIC_VECTOR (7 downto 0); -- sum, carry
begin

gl: for i in 0 to 7 generate —-- product-component bits

g2: for j in O to 7 generate
Ul: AND2 port map (Y(i), X(j), PC(i)(j));
end generate;
end generate;
g3: for j in O to 7 generate
PCS(0) (j) <= PC(0)(j); -- initialize first-row "virtual" adders
PCC(0)(j) <= '0';
end generate;
g4: for i in 1 to 7 generate -- do full adders except the last row
gb: for j in O to 6 generate
U2: XOR3 port map (PC(i)(j),PCS(i-1) (j+1),PCC(i-1)(j),PCS(i)(j));
U3: MAJ port map (PC(i)(j),PCS(i-1)(j+1),PCC(i-1)(j),PCC(i)(j));
PCS(i) (7) <= PC(i)(7); -- leftmost "virtual" adder sum output
end generate;
end generate;
RAC(0) <= '0';
g6: for i in O to 6 generate -- final ripple adder
U7: XOR3 port map (PCS(7)(i+1), PCC(7) (i), RAC(i), RAS(i));
U3: MAJ port map (PCS(7)(i+1), PCC(7) (i), RAC(i), RAC(i+1));
end generate;
g7: for i in 0 to 7 generate
P(i) <= PCS(i)(0); -- get first 8 product bits from full-adder sums
end generate;
g8: for i in 8 to 14 generate

P(i) <= RAS(i-8); -- get next 7 bits from ripple-adder sums
end generate;
P(15) <= RAC(7); -- get last bit from ripple-adder carry

end vmul8x8s_arch;
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adders, not shown in the figure, whose sum outputs equal the first ranwbiié

and whose carry outputs are 0. The third, nestadloop corresponds to the
main array of adders indgure 5-99, all except the last row, which is handled by
the fourthfor loop. The last twdor loops assign the appropriate adder outputs
to the multiplier output signals.

The program in Table 5-58 can be modified to use structural VHDL as
shown in Table 5-59. This approach gives the designer complete control over the
circuit structure that is synthesized, as might be desired in an ASIC realization.
The program assumes that the architecturesNo2, X0R3, andMAJ3 have been
defined elsewhere, for example, in an ASIC library.

This program makes good use of enerate statemento create the generate statement
arrays of components used in the multiplier. gagerate statement must have
a label, and similar to Bor-1loop Statement, it specifies an iteration scheme to
control the repetition of the enclosed statements. Withir-generate, the
enclosed statements can include any concurrent staten@AEN-ELSE
statements, and additional levels of looping constructs. Somegjenesate
statements are combined witRh-THEN-ELSE to produce a kind of conditional
compilation capability

Well, we said we’d save the best for last, and here it is. The IEEE
std_logic_arith library that we introduced in Section 5.9.6 defines multipli-
cation functions foSIGNED andUNSIGNED types, and overlays these functions
onto the %” operator. Thus, the program in Table 5-60 can multiply unsigned
numbers with a simple one-line assignment statement.

Within the IEEEstd_logic_arith library, the multiplication function is
defined behaviorally, using the shift-and-add algorithm. We could have showed
you this approach at the beginning of this subsection, but then you wouldn’t have
read the rest of it, would you?

library IEEE; Table 5-60
use IEEE.std_logic_1164.all; Truly behavioral VHDL
use IEEE.std_logic_arith.all; program for an 8x8

combinational multiplier.
entity vmul8x8i is
port (
X: in UNSIGNED (7 downto 0);
Y: in UNSIGNED (7 downto 0);
P: out UNSIGNED (15 downto 0)
Ve

end vmul8x8i;

architecture vmul8x8i_arch of vmul8x8i is
begin

P<=XxY,;
end vmul8x8i_arch;

Copyright © 1999 by John F. Wakerly Copying Prohibited



416 Chapter 5 Combinational Logic Design Practices

SIGNALS VS. Variables are used rather than signals in the process in Table 5-58 to make the
VARIABLES simulation run faster. Variables are faster because the simulator keeps track of their
values only when the process is running. Because variable values are assigned
sequentially, the process in Table 5-58 is carefully written to compute values in the
proper order. That is, a variable cannot be used until a value has been assigned to it.
Signals, on the other hand, have a value at all times. When a signal value is
changed in a process, the simulator schedules a future event in its event list for the
value change. If the signal appears on the right-hand side of an assignment statement
in the process, then the signal must also be included in the process’ sensitivity list. If
a signal value changes, the process will then execute again, and keep repeating until
all of the signals in the sensitivity list are stable.
In Table 5-58, if you wanted to observe internal values or timing during
simulation, you could change all the variables (ext¢eptdj) to signals and include
them in the sensitivity list. To make the program syntactically correct, you wauld
also have to move theype andsignal declarations to just after the architecture
statement, and change all of the™ assignments to<=".
Suppose that after making the changes above, you also reversed the order of
the indices in thé&or loops (e.g., 7 downto 0” instead of ‘0 to 7). The program
would still work. However, dozens of repetitions of the process would be required
for each input change ihorY, because the signal changes in this circuit propagate
from the lowest index to the highest.
While the choice of signals vs. variables affects the speed of simulation, with
most VHDL synthesis engines it does not affect the results of synthesis.

ON THE A three-input “majority function,¥AJ, is defined at the beginning of Table 5-58 and
THRESHOLD OF is subsequently used to compute carry outputs.nAnput majority function
A DREAM produces a 1 output if the majority of its inputs are 1, two out of three in the case of
a 3-input majority function. (Ifi is evenn/2+1 inputs must be 1.)

Over thirty years ago, there was substantial academic interest in a more general

class ofn-input threshold functionsvhich produce a 1 output kf or more of their

inputs are 1. Besides providing full employment for logic theoreticians, threshold

functions could realize many logic functions with a smaller number of elements than

could a conventionadND/OR realization. For example, an adder’s carry function

requires thre@ND gates and on®R gate, but just one three-input threshold gate|.
(Un)fortunately, an economical technology never emerged for threshold gates,

and they remain, for now, an academic curiosity.
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I
SYNTHESIS OF You've probably heard that compilers for high-level programming languages like C
BEHAVIORAL usually generate better code than people do writing in assembly language, even with
DESIGNS “hand-tweaking.” Most digital designers hope that compilers for behavioral HDLs
will also some day produce results superior to a typical hand-tweaked design, be it a
schematic or structural VHDL. Better compilers won't put the designers out of work,
they will simply allow them to tackle bigger designs.

We're not quite there yet. However, the more advanced synthesis engines do
include some nice optimizations for commonly used behavioral structures.|For
example, | have to admit that the FPGA synthesis engine that | used to test the VHDL
programs in this subsection produced just as fast a multiplier from Table 5-60 |as it
did from any of the more detailed architectures!
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nationspublished by the IEEE in 1996w . ieee.org).

Real logic devices are described in data sheets and data books published by
the manufacturers. Updated editions of data books used to be published every
few years, but in recent years the trend has been to minimize or eliminate the
hardcopy editions and instead to publish up-to-date information on the web. Two
of the largest suppliers with the most comprehensive sites are Texas Instruments
(www.ti.com)and Motorolagww.mot . com).

For a given logic family such as 74ALS, all méamturers list generally
equivalent specifications, so you can get by with just one data book per family.
Some specifications, especially timing, may vary slightly between factow-
ers, so when timing is tight it's best to check a couple ofwdifit sources and use
the worst case. That'slat easier than convincing your mdaaturing depart-
ment to buy a component only from a single supplier.
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