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one’s output with a multiplexer, the synthesis engine can build just one adder and
select its inputs using multiplexers, potentially creating a smaller overall circuit.

*5.11 Combinational Multipliers
*5.11.1 Combinational Multiplier Structures
In Section 2.8, we outlined an algorithm that uses n shifts and adds to multiply
n-bit binary numbers. Although the shift-and-add algorithm emulates the way
that we do paper-and-pencil multiplication of decimal numbers, there is nothing
inherently “sequential” or “time dependent” about multiplication. That is, given
two n-bit input words X and Y, it is possible to write a truth table that expresses
the 2n-bit product P = X⋅Y as a combinational function of X and Y. A combina-
tional multiplier is a logic circuit with such a truth table.

Most approaches to combinational multiplication are based on the paper-
and-pencil shift-and-add algorithm. Figure 5-97 illustrates the basic idea for an
8×8 multiplier for two unsigned integers, multiplicand X = x7x6x5x4x3x2x1x0 and
multiplier Y = y7y6y5y4y3y2y1y0. We call each row a product component, a shifted

Ta b l e  5 - 5 6
VHDL program that 
allows adder sharing.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity vaddshr is
    port (
        A, B, C, D: in SIGNED (7 downto 0);
        SEL: in STD_LOGIC;
        S: out SIGNED (7 downto 0)
    );
end vaddshr;

architecture vaddshr_arch of vaddshr is
begin
    S <= A + B when SEL = '1' else C + D;
end vaddshr_arch;

combinational 
multiplier

y1x7 y1x6 y1x5 y1x4 y1x3 y1x2 y1x1 y1x0

y3x7 y3x6 y3x5 y3x4 y3x3 y3x2 y3x1 y3x0

y5x7 y5x6 y5x5 y5x4 y5x3 y5x2 y5x1 y5x0

y7x7 y7x6 y7x5 y7x4 y7x3 y7x2 y7x1 y7x0

y6x6 y6x5 y6x4 y6x3 y6x2 y6x1 y6x0y6x7

y4x6 y4x5 y4x4 y4x3 y4x2 y4x1 y4x0y4x7

y2x6 y2x5 y2x4 y2x3 y2x2 y2x1 y2x0y2x7

y0x6 y0x5 y0x4 y0x3 y0x2 y0x1 y0x0y0x7

p14 p13 p12p15 p10 p9 p8p11 p6 p5 p4p7 p2 p1 p0p3

Figure 5-97
Partial products in an 
8 × 8 multiplier.

product component
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multiplicand that is multiplied by 0 or 1 depending on the corresponding multi-
plier bit. Each small box represents one product-component bit yixj, the logical
AND of multiplier bit yi and multiplicand bit xj. The product P = p15p14. ..p2p1p0
has 16 bits and is obtained by adding together all the product components.

Figure 5-98 shows one way to add up the product components. Here, the
product-component bits have been spread out to make space, and each “+” box
is a full adder equivalent to Figure 5-86(c) on page 393. The carries in each row
of full adders are connected to make an 8-bit ripple adder. Thus, the first ripple
adder combines the first two product components to product the first partial
product, as defined in Section 2.8. Subsequent adders combine each partial
product with the next product component.

It is interesting to study the propagation delay of the circuit in Figure 5-98.
In the worst case, the inputs to the least significant adder (y0x1 and y1x0) can
affect the MSB of the product (p15). If we assume for simplicity that the delays
from any input to any output of a full adder are equal, say tpd, then the worst case
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Figure 5-98
Interconnections 
for an 8 × 8 
combinational 
multiplier.
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path goes through 20 adders and its delay is 20tpd. If the delays are different, then
the answer depends on the relative delays; see Exercise 5.88.

Sequential multipliers use a single adder and a register to accumulate the
partial products. The partial-product register is initialized to the first product
component, and for an n×n-bit multiplication, n−1 steps are taken and the adder
is used n−1 times, once for each of the remaining n−1 product components to be
added to the partial-product register.

Some sequential multipliers use a trick called carry-save addition to speed
up multiplication. The idea is to break the carry chain of the ripple adder to
shorten the delay of each addition. This is done by applying the carry output
from bit i during step j to the carry input for bit i+1 during the next step, j+1.
After the last product component is added, one more step is needed in which the

sequential multiplier
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Figure 5-99
Interconnections 
for a faster 8 × 8 
combinational 
multiplier.

carry-save addition
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carries are hooked up in the usual way and allowed to ripple from the least to the
most significant bit.

The combinational equivalent of an 8×8 multiplier using carry-save addi-
tion is shown in Figure 5-99. Notice that the carry out of each full adder in the
first seven rows is connected to an input of an adder below it. Carries in the
eighth row of full adders are connected to create a conventional ripple adder.
Although this adder uses exactly the same amount of logic as the previous one
(64 2-input AND gates and 56 full adders), its propagation delay is substantially
shorter. Its worst-case delay path goes through only 14 full adders. The delay can
be further improved by using a carry lookahead adder for the last row.

The regular structure of combinational multipliers make them ideal for
VLSI and ASIC realization. The importance of fast multiplication in micro-
processors, digital video, and many other applications has led to much study and
development of even better structures and circuits for combinational multipliers;
see the References.

*5.11.2 Multiplication in ABEL and PLDs
ABEL provides a multiplication operator *, but it can be used only with individ-
ual signals, numbers, or special constants, not with sets. Thus, ABEL cannot
synthesize a multiplier circuit from a single equation like “P = X*Y.” 

Still, you can use ABEL to specify a combinational multiplier if you break
it down into smaller pieces. For example, Table 5-57 shows the design of a 4×4
unsigned multiplier following the same general structure as Figure 5-97 on page
page 408. Expressions are used to define the four product components, PC1,
PC2, PC3, and PC4, which are then added in the equations section of the pro-
gram. This does not generate an array of full adders as in Figure 5-98 or 5-99.
Rather, the ABEL compiler will dutifully crunch the addition equation to pro-

module mul4x4
title '4x4 Combinational Multiplier'

X3..X0, Y3..Y0 pin;  " multiplicand, multiplier
P7..P0         pin istype 'com';    " product

P = [P7..P0];
PC1 = Y0 & [0, 0, 0, 0,X3,X2,X1,X0];
PC2 = Y1 & [0, 0, 0,X3,X2,X1,X0, 0];
PC3 = Y2 & [0, 0,X3,X2,X1,X0, 0, 0];
PC4 = Y3 & [0,X3,X2,X1,X0, 0, 0, 0];

equations
P = PC1 + PC2 + PC3 + PC4;

end mul4x4

Ta b l e  5 - 5 7
ABEL program for a 
4×4 combinational 
multiplier.
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duce a minimal sum for each of the eight product output bits. Surprisingly, the
worst-case output, P4, has only 36 product terms, a little high but certainly real-
izable in two passes through a PLD.

*5.11.3 Multiplication in VHDL
VHDL is rich enough to express multiplication in a number of different ways;
we’ll save the best for last. 

Table 5-58 is a behavioral VHDL program that mimics the multiplier
structure of Figure 5-99. In order to represent the internal signals in the figure,
the program defines a new data type, array8x8, which is a two-dimensional
array of STD_LOGIC (recall that STD_LOGIC_VECTOR is a one-dimensional array
of STD_LOGIC). Variable PC is declared as a such an array to hold the product-
component bits, and variables PCS and PCC are similar arrays to hold the sum and
carry outputs of the main array of full adders. One-dimensional arrays RAS and
RAC hold the sum and carry outputs of the ripple adder. Figure 5-100 shows the
variable naming and numbering scheme. Integer variables i and j are used as
loop indices for rows and columns, respectively. 

The program attempts to illustrate the logic gates that would be used in a
faithful realization of Figure 5-99, even though a synthesizer could legitimately
create quite a different structure from this behavioral program. If you want to
control the structure, then you must use structural VHDL, as we’ll show later.

In the program, the first, nested for statement performs 64 AND operations
to obtain the product-component bits. The next for loop initializes boundary
conditions at the top of the multiplier, using the notion of row-0 “virtual” full
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VHDL variable names 
for the 8 × 8 multiplier.



Section *5.10 Adders, Subtractors, and ALUs 413

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

library IEEE;
use IEEE.std_logic_1164.all;

entity vmul8x8p is
    port ( X: in STD_LOGIC_VECTOR (7 downto 0);
           Y: in STD_LOGIC_VECTOR (7 downto 0);
           P: out STD_LOGIC_VECTOR (15 downto 0) );
end vmul8x8p;

architecture vmul8x8p_arch of vmul8x8p is
function MAJ (I1, I2, I3: STD_LOGIC) return STD_LOGIC is
  begin
    return ((I1 and I2) or (I1 and I3) or (I2 and I3));
  end MAJ;  
begin
process (X, Y)
type array8x8 is array (0 to 7) of STD_LOGIC_VECTOR (7 downto 0);
variable PC: array8x8;     -- product component bits
variable PCS: array8x8;    -- full-adder sum bits
variable PCC: array8x8;    -- full-adder carry output bits
variable RAS, RAC: STD_LOGIC_VECTOR (7 downto 0); -- ripple adder sum
  begin                                           --   and carry bits
    for i in 0 to 7 loop for j in 0 to 7 loop
        PC(i)(j) := Y(i) and X(j); -- compute product component bits
    end loop;  end loop;
    for j in 0 to 7 loop    
      PCS(0)(j) := PC(0)(j);  -- initialize first-row "virtual"
      PCC(0)(j) := '0';       --   adders (not shown in figure)
    end loop;
    for i in 1 to 7 loop      -- do all full adders except last row
      for j in 0 to 6 loop    
        PCS(i)(j) := PC(i)(j) xor PCS(i-1)(j+1) xor PCC(i-1)(j);  
        PCC(i)(j) := MAJ(PC(i)(j), PCS(i-1)(j+1), PCC(i-1)(j));
        PCS(i)(7) := PC(i)(7); -- leftmost "virtual" adder sum output
      end loop;
    end loop;
    RAC(0) := '0';
    for i in 0 to 6 loop  -- final ripple adder
      RAS(i) := PCS(7)(i+1) xor PCC(7)(i) xor RAC(i);  
      RAC(i+1) := MAJ(PCS(7)(i+1), PCC(7)(i), RAC(i));  
    end loop;
    for i in 0 to 7 loop
      P(i) <= PCS(i)(0);  -- first 8 product bits from full-adder sums
    end loop;
    for i in 8 to 14 loop
      P(i) <= RAS(i-8);   -- next 7 bits from ripple-adder sums
    end loop;
    P(15) <= RAC(7);      -- last bit from ripple-adder carry
  end process;
end vmul8x8p_arch;

Ta b l e  5 - 5 8
Behavioral VHDL 
program for an 8×8 
combinational 
multiplier.
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Ta b l e  5 - 5 9
Structural VHDL 
architecture for an 
8×8 combinational 
multiplier.

architecture vmul8x8s_arch of vmul8x8s is
component AND2
  port( I0, I1: in STD_LOGIC;
        O: out STD_LOGIC );
end component;
component XOR3
  port( I0, I1, I2: in STD_LOGIC;
        O: out STD_LOGIC );
end component;
component MAJ   -- Majority function, O = I0*I1 + I0*I2 + I1*I2 
  port( I0, I1, I2: in STD_LOGIC;
        O: out STD_LOGIC );
end component;

type array8x8 is array (0 to 7) of STD_LOGIC_VECTOR (7 downto 0);
signal PC: array8x8;     -- product-component bits
signal PCS: array8x8;    -- full-adder sum bits
signal PCC: array8x8;    -- full-adder carry output bits
signal RAS, RAC: STD_LOGIC_VECTOR (7 downto 0); -- sum, carry
begin
  g1: for i in 0 to 7 generate    -- product-component bits
    g2: for j in 0 to 7 generate
        U1: AND2 port map (Y(i), X(j), PC(i)(j));
    end generate;
  end generate;
  g3: for j in 0 to 7 generate    
    PCS(0)(j) <= PC(0)(j);  -- initialize first-row "virtual" adders
    PCC(0)(j) <= '0';   
  end generate;
  g4: for i in 1 to 7 generate   -- do full adders except the last row
    g5: for j in 0 to 6 generate
      U2: XOR3 port map (PC(i)(j),PCS(i-1)(j+1),PCC(i-1)(j),PCS(i)(j));
      U3: MAJ  port map (PC(i)(j),PCS(i-1)(j+1),PCC(i-1)(j),PCC(i)(j));
      PCS(i)(7) <= PC(i)(7); -- leftmost "virtual" adder sum output
    end generate;
  end generate;
  RAC(0) <= '0';
  g6: for i in 0 to 6 generate  -- final ripple adder
    U7: XOR3 port map (PCS(7)(i+1), PCC(7)(i), RAC(i), RAS(i));    
    U3: MAJ  port map (PCS(7)(i+1), PCC(7)(i), RAC(i), RAC(i+1));
  end generate;
  g7: for i in 0 to 7 generate
    P(i) <= PCS(i)(0); -- get first 8 product bits from full-adder sums
  end generate;
  g8: for i in 8 to 14 generate
    P(i) <= RAS(i-8);  -- get next 7 bits from ripple-adder sums
  end generate;
  P(15) <= RAC(7);     -- get last bit from ripple-adder carry
end vmul8x8s_arch;
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adders, not shown in the figure, whose sum outputs equal the first row of PC bits
and whose carry outputs are 0. The third, nested for loop corresponds to the
main array of adders in Figure 5-99, all except the last row, which is handled by
the fourth for loop. The last two for loops assign the appropriate adder outputs
to the multiplier output signals.

The program in Table 5-58 can be modified to use structural VHDL as
shown in Table 5-59. This approach gives the designer complete control over the
circuit structure that is synthesized, as might be desired in an ASIC realization.
The program assumes that the architectures for AND2, XOR3, and MAJ3 have been
defined elsewhere, for example, in an ASIC library.

This program makes good use of the generate  statement to create the
arrays of components used in the multiplier. The generate statement must have
a label, and similar to a for-loop statement, it specifies an iteration scheme to
control the repetition of the enclosed statements. Within for-generate, the
enclosed statements can include any concurrent statements, IF-THEN-ELSE

statements, and additional levels of looping constructs. Sometimes generate

statements are combined with IF-THEN-ELSE to produce a kind of conditional
compilation capability

Well, we said we’d save the best for last, and here it is. The IEEE
std_logic_arith library that we introduced in Section 5.9.6 defines multipli-
cation functions for SIGNED and UNSIGNED types, and overlays these functions
onto the “*” operator. Thus, the program in Table 5-60 can multiply unsigned
numbers with a simple one-line assignment statement. 

Within the IEEE std_logic_arith library, the multiplication function is
defined behaviorally, using the shift-and-add algorithm. We could have showed
you this approach at the beginning of this subsection, but then you wouldn’t have
read the rest of it, would you?

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity vmul8x8i is
    port (
        X: in UNSIGNED (7 downto 0);
        Y: in UNSIGNED (7 downto 0);
        P: out UNSIGNED (15 downto 0)
    );
end vmul8x8i;

architecture vmul8x8i_arch of vmul8x8i is
begin
  P <= X * Y;
end vmul8x8i_arch;

Ta b l e  5 - 6 0
Truly behavioral VHDL 
program for an 8×8 
combinational multiplier.

generate statement
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SIGNALS VS.
VARIABLES

Variables are used rather than signals in the process in Table 5-58 to make the
simulation run faster. Variables are faster because the simulator keeps track of their
values only when the process is running. Because variable values are assigned
sequentially, the process in Table 5-58 is carefully written to compute values in the
proper order. That is, a variable cannot be used until a value has been assigned to it.

Signals, on the other hand, have a value at all times. When a signal value is
changed in a process, the simulator schedules a future event in its event list for the
value change. If the signal appears on the right-hand side of an assignment statement
in the process, then the signal must also be included in the process’ sensitivity list. If
a signal value changes, the process will then execute again, and keep repeating until
all of the signals in the sensitivity list are stable. 

In Table 5-58, if you wanted to observe internal values or timing during
simulation, you could change all the variables (except i and j) to signals and include
them in the sensitivity list. To make the program syntactically correct, you would
also have to move the type and signal declarations to just after the architecture
statement, and change all of the “:=” assignments to “<=”. 

Suppose that after making the changes above, you also reversed the order of
the indices in the for loops (e.g., “7 downto 0” instead of “0 to 7”).   The program
would still work. However, dozens of repetitions of the process would be required
for each input change in X or Y, because the signal changes in this circuit propagate
from the lowest index to the highest.

While the choice of signals vs. variables affects the speed of simulation, with
most VHDL synthesis engines it does not affect the results of synthesis.

ON THE
THRESHOLD OF

A DREAM

A three-input “majority function,” MAJ, is defined at the beginning of Table 5-58 and
is subsequently used to compute carry outputs. An n-input majority function
produces a 1 output if the majority of its inputs are 1, two out of three in the case of
a 3-input majority function. (If n is even, n/2+1 inputs must be 1.)

Over thirty years ago, there was substantial academic interest in a more general
class of n-input threshold functions which produce a 1 output if k or more of their
inputs are 1. Besides providing full employment for logic theoreticians, threshold
functions could realize many logic functions with a smaller number of elements than
could a conventional AND/OR realization. For example, an adder’s carry function
requires three AND gates and one OR gate, but just one three-input threshold gate. 

(Un)fortunately, an economical technology never emerged for threshold gates,
and they remain, for now, an academic curiosity.
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Bacon, 1979). Another book on writing style, especially for nerds, is Effective
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The ANSIIEEE standard for logic symbols is Std 91-1984, IEEE Standard
Graphic Symbols for Logic Functions. Another standard of interest to logic
designers is ANSI/IEEE 991-1986, Logic Circuit Diagrams. These two stan-
dards and ten others, including standard symbols for 10-inch gongs and maid’s-
signal plugs, can be found in one handy, five-pound reference, Electrical and
Electronics Graphic and Letter Symbols and Reference Designations Standards
Collection Electrical and Electronics Graphics Symbols and Reference Desig-
nations published by the IEEE in 1996 (www.ieee.org).

Real logic devices are described in data sheets and data books published by
the manufacturers. Updated editions of data books used to be published every
few years, but in recent years the trend has been to minimize or eliminate the
hardcopy editions and instead to publish up-to-date information on the web. Two
of the largest suppliers with the most comprehensive sites are Texas Instruments
(www.ti.com) and Motorola (www.mot.com). 

For a given logic family such as 74ALS, all manufacturers list generally
equivalent specifications, so you can get by with just one data book per family.
Some specifications, especially timing, may vary slightly between manufactur-
ers, so when timing is tight it’s best to check a couple of different sources and use
the worst case. That’s a lot easier than convincing your manufacturing depart-
ment to buy a component only from a single supplier.

SYNTHESIS OF
BEHAVIORAL

DESIGNS

You’ve probably heard that compilers for high-level programming languages like C
usually generate better code than people do writing in assembly language, even with
“hand-tweaking.” Most digital designers hope that compilers for behavioral HDLs
will also some day produce results superior to a typical hand-tweaked design, be it a
schematic or structural VHDL. Better compilers won’t put the designers out of work,
they will simply allow them to tackle bigger designs.

We’re not quite there yet. However, the more advanced synthesis engines do
include some nice optimizations for commonly used behavioral structures. For
example, I have to admit that the FPGA synthesis engine that I used to test the VHDL
programs in this subsection produced just as fast a multiplier from Table 5-60 as it
did from any of the more detailed architectures!


