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A similar symbolic equivalence can be inferred from theorem T13′. As
shown in Figure 4-4, a NOR gate may be realized as an OR gate followed by an
inverter, or as inverters followed by an AND gate.

Theorems T13 and T13′ are just special cases of a generalized DeMorgan’s
theorem, T14, that applies to an arbitrary logic expression F. By definition, the
complement of a logic expression, denoted (F)′, is an expression whose value is
the opposite of F’s for every possible input combination. Theorem T14 is very
important because it gives us a way to manipulate and simplify the complement
of an expression.

Theorem T14 states that, given any n-variable logic expression, its comple-
ment can be obtained by swapping + and ⋅  and complementing all variables. For
example, suppose that we have

In the second line we have enclosed complemented variables in parentheses to
remind you that the ′ is an operator, not part of the variable name. By applying
theorem T14, we obtain

Using theorem T4, this can be simplified to

In general, we can use theorem T14 to complement a parenthesized expression
by swapping + and ⋅ , complementing all uncomplemented variables, and
uncomplementing all complemented ones.

The generali zed DeMorgan’s theorem T14 can be proved by showing that
all logic functions can be written as either a sum or a product of subfunctions,

F(W, X, Y, Z) = (W′ ⋅ X) + (X ⋅ Y) + (W ⋅ (X′ + Z′))
= ((W)′ ⋅ X) + (X ⋅ Y) + (W ⋅ ((X)′ + (Z)′))

[F(W, X, Y, Z)]′ = ((W′)′ + X′) ⋅ (X′ + Y′) ⋅ (W′ + ((X′)′ ⋅ (Z′)′)) 

[F(W, X, Y, Z)]′ = (W + X′) ⋅ (X′ + Y′) ⋅ (W′ + (X ⋅ Z))

X
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Y
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Y

Z = (X + Y)′ Z = (X + Y)′

X′

Y′

X
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Z = X′ • Y′

(a) (c)

(b) Z = X′ • Y′(d)

X + Y

Fi g u r e 4-4 Equivalent circuits according to DeMorgan’s theorem T13′:
(a) OR-NOT; (b) NOT-AND; (c) logic symbol for a NOR gate;
(d) equivalent symbol for a NOR gate.
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variables X1, X2, …, Xn and the operators +, ⋅ , and ′, then the dual of F, written
FD, is the same expression with + and ⋅  swapped:

You already knew this, of course, but we wrote the definition in this way just to
highlight the similarity between duali ty and the generalized DeMorgan’s
theorem T14, which may now be restated as follows:

Let’s examine this statement in terms of a physical network.
Figure 4-5(a) shows the electrical function table for a logic element that

we’ll simply call a “ type-1”  gate. Under the positive-logic convention (LOW = 0
and HIGH = 1), this is an AND gate, but under the negative-logic convention
(LOW = 1 and HIGH = 0), it is an OR gate, as shown in (b) and (c). We can also
imagine a “ type-2”  gate, shown in Figure 4-6, that is a positive-logic OR or a
negative-logic AND. Similar tables can be developed for gates with more than
two inputs.

FD(X1, X2, …, Xn, +, ⋅ , ′) = F(X1, X2, …, Xn, ⋅ , +, ′)

[F(X1, X2, …, Xn)]′ = FD(X1′, X2′, …, Xn′)

Z = X + Y= X • Y Z

X Y Z

X

Y
Z

X Y Z

X

Y

LOW LOW LOW 0 0 0  1 1 1
LOW HIGH LOW 0 1 0  1 0 1
HIGH LOW LOW 1 0 0  0 1 1
HIGH HIGHHIGH 1 11 0 00

X Y Z

X

Y

(a)
type 1

(b) (c)
type 1 type 1

Fi g u r e 4-5 A “type-1”logic gate: (a) electrical function table; (b) logic function
table and symbol with positive logic; (c) logic function table and 
symbol with negative logic.
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LOW HIGH HIGH 0 1 1  1 0 0

HIGH LOW HIGH 1 0 1  0 1 0
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X Y Z

Z = X + Y
X

Y
type 2 type 2

Fi g u r e 4-6 A “type-2” logic gate: (a) electrical function table; (b) logic function
table and symbol with positive logic; (c) logic function table and 
symbol with negative logic.
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shown in Table 4-7. Once we have the truth table for the circuit, we can also
directly write a logic expression—the canonical sum or product—if we wish.

The number of input combinations of a logic circuit grows exponentially
with the number of inputs, so the exhaustive approach can quickly become
exhausting. Instead, we normally use an algebraic approach whose complexity is
more linearly proportional to the size of the circuit. The method is simple—we
build up a parenthesized logic expression corresponding to the logic operators
and structure of the circuit. We start at the circuit inputs and propagate
expressions through gates toward the output. Using the theorems of switching
algebra, we may simplify the expressions as we go, or we may defer all algebraic
manipulations until an output expression is obtained.

Figure 4-11 applies the algebraic technique to our example circuit. The
output function is given on the output of the final OR gate:

No switching-algebra theorems were used to obtain this expression. However,
we can use theorems to transform this expression into another form. For
example, a sum of products can be obtained by “multiplying out”:

Row X Y Z F Table 4-7
Truth table for the 
logic circuit of 
Figure 4-9.

0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

3 0 1 1 0

4 1 0 0 0

5 1 0 1 1

6 1 1 0 0

7 1 1 1 1

F = ((X+Y′) ⋅ Z) + (X′ ⋅ Y ⋅ Z′)

F = X ⋅ Z + Y′ ⋅ Z + X′ ⋅ Y ⋅ Z′

F

X

Y
Y′

X + Y′

(X + Y′ ) •   Z 

X′

Z′

Z

= ((X + Y′) •   Z) + (X′ • Y •   Z′)

X′ • Y •   Z′

Figure 4-11
Logic expressions 
for signal lines.
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Quite often, DeMorgan’s theorem can be applied graphically to simplify
algebraic analysis. Recall from Figures 4-3 and 4-4 that NAND and NOR gates
each have two equivalent symbols. By judiciously redrawing Figure 4-14, we
make it possible to cancel out some of the inversions during the analysis by using
theorem T4 [(X′)′ = X], as shown in Figure 4-15. This manipulation leads us to a
simplified output expression directly:

Figures 4-14 and 4-15 were just two different ways of drawing the same
physical logic circuit. However, when we simplify a logic expression using the
theorems of switching algebra, we get an expression corresponding to a different
physical circuit. For example, the simplified expression above corresponds to
the circuit of Figure 4-16, which is physically different from the one in the
previous two figures. Furthermore, we could multiply out and add out the

F = [((W ⋅ X′)′ ⋅ Y)′ + (W′ + X + Y′)′ + (W + Z)′]′
= ((W′ + X)′ + Y′)′ ⋅ (W ⋅ X′ ⋅ Y)′ ⋅ (W′ ⋅ Z′)′
= ((W ⋅ X′)′ ⋅ Y) ⋅ (W′ + X + Y′) ⋅ (W + Z)

= ((W′ + X) ⋅ Y) ⋅ (W′ + X + Y′) ⋅ (W + Z)

F = ((W′ + X) ⋅ Y) ⋅ (W′ + X + Y′) ⋅ (W + Z)

F

X

W

Y

Z

= [((W • X′)′ • Y)′ + (W′ +   X + Y′)′
+ (W +  Z)′]′

X′
(W • X′)′

((W • X′)′ • Y)′

(W′ + X + Y′)′

(W + Z)′

W′

Y′ Figure 4-14
Algebraic analysis of 
a logic circuit with 
NAND and NOR gates.
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= ((W′ + X) • Y) • (W′ +   X + Y′)
• (W +  Z)

X′
W′ + X

((W′ + X) • Y)′

(W′ + X + Y′)′

(W + Z)′

W′
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Figure 4-15
Algebraic analysis of 
the previous circuit 
after substituting 
some NAND and 
NOR symbols.
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expression to obtain sum-of-products and product-of-sums expressions corre-
sponding to two more physically different circuits for the same logic function.

Although we used logic expressions above to convey information about the
physical structure of a circuit, we don’t always do this. For example, we might
use the expression G(W, X, Y, Z) = W ⋅ X ⋅ Y + Y ⋅ Z to describe any one of the
circuits in Figure 4-17. Normally, the only sure way to determine a circuit’s
structure is to look at its schematic drawing. However, for certain restricted
classes of circuits, structural information can be inferred from logic expressions.
For example, the circuit in (a) could be described without reference to the draw-
ing as “a two-level AND-OR circuit for W ⋅ X ⋅ Y + Y ⋅ Z,” while the circuit in (b)
could be described as “a two-level NAND-NAND circuit for W ⋅ X ⋅ Y + Y ⋅ Z.”

F

X

W

Y

Z

= ((W′ + X) • Y) • (W′ +   X + Y′)
• (W +  Z)

X′
W′ + X

(W′ + X) • Y

W′ + X + Y′

W + Z

W′

Y′

Figure 4-16 A different circuit for same logic function.
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Z

Y′

W •   X •   Y

W •   X •   Y

(W •   X •   Y)′

(W •   X)′

(Y •   Z)′Y •   Z

Y •   Z

Figure 4-17 Three circuits for G(W, X, Y, Z) = W ⋅ X ⋅Y + Y ⋅ Z: (a) two-level
AND-OR; (b) two-level NAND-NAND; (c) ad hoc.
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4-variable maps, corresponding cells on the left/right or top/bottom borders are
less obvious neighbors; for example, cells 12 and 14 in the 4-variable map are
adjacent because they differ only in the value of Y.

Each input combination with a “1” in the truth table corresponds to a
minterm in the logic function’s canonical sum. Since pairs of adjacent “1” cells
in the Karnaugh map have minterms that differ in only one variable, the minterm
pairs can be combined into a single product term using the generalization of
theorem T10, term⋅ Y + term⋅  Y′ = term. Thus, we can use a Karnaugh map to
simplify the canonical sum of a logic function.

For example, consider cells 5 and 7 in Figure 4-27(b) and their contribu-
tion to the canonical sum for this function:

Remembering wraparound, we see that cells 1 and 5 in Figure 4-27(b) are also
adjacent and can be combined: 

In general, we can simplify a logic function by combining pairs of adjacent
1-cells (minterms) whenever possible and writing a sum of product terms that
covers all of the 1-cells. Figure 4-27(c) shows the result for our example logic
function. We circle a pair of 1s to indicate that the corresponding minterms are
combined into a single product term. The corresponding AND-OR circuit is
shown in Figure 4-28.

In many logic functions the cell-combining procedure can be extended to
combine more than two 1-cells into a single product term. For example, consider

F = ⋅ ⋅⋅ + X ⋅ Y′ ⋅ Z + X ⋅ Y ⋅ Z

=  ⋅ ⋅ ⋅ + (X ⋅ Z) ⋅ Y′+(X ⋅ Z) ⋅ Y

=  ⋅ ⋅ ⋅ + X ⋅ Z

F = X′ ⋅ Y′ ⋅ Z + X ⋅ Y′ ⋅ Z + ⋅ ⋅ ⋅ 
= X′ ⋅ (Y′ ⋅ Z) + X ⋅ (Y′ ⋅ Z) + ⋅ ⋅ ⋅ 
= Y′ ⋅ Z + …

1

1 1 1

00 01 11 10

X Y

0

X

Y

Z1

Z

(c)(b)(a)

0

1

2

3

6

7

4

5

00 01 11 10

X Y

0

1

X

Y

Z

0 1 0 0

1 0 1 1

Z

X Y Z F

0 0 0 0
10 0 1

0 1 0 1
00 1 1

1 0 0 0
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Figure 4-27 F = ΣX,Y,Z(1,2,5,7): (a) truth table; (b) Karnaugh map;
(c) combining adjacent 1-cells.
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the canonical sum for the logic function F = ΣX,Y,Z(0, 1, 4, 5, 6). We can use the
algebraic manipulations of the previous examples iteratively to combine four of
the five minterms:

In general, 2i 1-cells may be combined to form a product term containing n − i
literals, where n is the number of variables in the function.

A precise mathematical rule determines how 1-cells may be combined and
the form of the corresponding product term:

• A set of 2i 1-cells may be combined if there are i variables of the logic
function that take on all 2i possible combinations within that set, while the
remaining n − i variables have the same value throughout that set. The cor-
responding product term has n − i literals, where a variable is complemented
if it appears as 0 in all of the 1-cells, and uncomplemented if it appears as 1.

Graphically, this rule means that we can circle rectangular sets of 2i 1s, literally
as well as figuratively stretching the definition of rectangular to account for
wraparound at the edges of the map. We can determine the literals of the
corresponding product terms directly from the map; for each variable we make
the following determination: 

• If a circle covers only areas of the map where the variable is 0, then the
variable is complemented in the product term. 

• If a circle covers only areas of the map where the variable is 1, then the
variable is uncomplemented in the product term.

• If a circle covers both areas of the map where the variable is 0 and areas
where it is 1, then the variable does not appear in the product term.

F = X′ ⋅ Y′ ⋅ Z′ + X′ ⋅ Y′ ⋅ Z + X ⋅ Y′ ⋅ Z′ + X ⋅ Y′ ⋅ Z + X ⋅ Y ⋅ Z′
= [(X′ ⋅ Y′) ⋅ Z′ + (X′ ⋅ Y′) ⋅ Z] + [(X ⋅ Y′) ⋅ Z′ + (X ⋅ Y′) ⋅ Z] + X ⋅ Y ⋅ Z′
= X′ ⋅ Y′ + X ⋅ Y′ + X ⋅ Y ⋅ Z′
= [X’ ⋅ (Y′) + X ⋅ (Y′)] + X ⋅ Y ⋅ Z′
= Y′ + X ⋅ Y ⋅ Z′

F

X

Y

Z

Y′

X′

Z′

X • Z

Y′ • Z

X′ • Y • Z′
Figure 4-28
Minimized AND-OR circuit.

rectangular sets of 1s
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A sum-of-products expression for a function must contain product terms (circled
sets of 1-cells) that cover all of the 1s and none of the 0s on the map.

The Karnaugh map for our most recent example, F = Σ X,Y,Z(0, 1, 4, 5, 6),
is shown in Figure 4-29(a) and (b). We have circled one set of four 1s,
corresponding to the product term Y′, and a set of two 1s corresponding to the
product term X ⋅ Z′. Notice that the second product term has one less literal than
the corresponding product term in our algebraic solution (X ⋅ Y ⋅ Z′). By circling
the largest possible set of 1s containing cell 6, we have found a less expensive
realization of the logic function, since a 2-input AND gate should cost less than a
3-input one. The fact that two different product terms now cover the same
1-cell (4) does not affect the logic function, since for logical addition 1 + 1 = 1,
not 2! The corresponding two-level AND/OR circuit is shown in (c).

As another example, the prime-number detector circuit that we introduced
in Figure 4-18 on page 215 can be minimized as shown in Figure 4-30. 

At this point, we need some more definitions to clarify what we’re doing:

• A minimal sum of a logic function F(X1,…,Xn) is a sum-of-products
expression for F such that no sum-of-products expression for F has fewer
product terms, and any sum-of-products expression with the same number of
product terms has at least as many literals.

That is, the minimal sum has the fewest possible product terms (first-level gates
and second-level gate inputs) and, within that constraint, the fewest possible
literals (first-level gate inputs). Thus, among our three prime-number detector
circuits, only the one in Figure 4-30 on the next page realizes a minimal sum.

The next definition says precisely what the word “imply” means when we
talk about logic functions:

• A logic function P(X1,…,Xn) implies a logic function F(X1,…,Xn) if for every
input combination such that P = 1, then F = 1 also. 

Z′

1

00 01 11 10
X Y

Z

X

Y

1 1

1 1

Y′

X • Z′
X

Z

Y
Y′

(a)

(c)

(b)
0

1 Z

0

1

2

3

6

7

4

5

00 01 11 10

X Y

Z

0

1

X

Y

Z

1

1 1

1 1

F = X •   Z′ + Y′

X •   Z′

Figure 4-29
F = ΣX,Y,Z(0,1,4,5,6): 
(a) initial Karnaugh 
map; (b) Karnaugh
map with circled 
product terms; 
(c) AND/OR circuit.
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An example of eclipsing is shown in Figure 4-35. After removing essential
prime implicants, we are left with two 1-cells, each of which is covered by two
prime implicants. However, X ⋅ Y ⋅ Z eclipses the other two prime implicants,
which therefore may be removed from consideration. The two 1-cells are then
covered only by X ⋅ Y ⋅ Z, which is a secondary essential prime implicant that
must be included in the minimal sum.

Figure 4-36 shows a more difficult case—a logic function with no essential
prime implicants. By trial and error we can find two different minimal sums for
this function.

We can also approach the problem systematically using the branching
method. Starting with any 1-cell, we arbitrarily select one of the prime impli-
cants that covers it, and we include it as if it were essential. This simplifies the
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Figure 4-34 F = ΣW,X,Y,Z(0,1,2,3,4,5,7,14,15): (a) Karnaugh map; (b) prime
implicants and distinguished 1-cells; (c) reduced map after
removal of essential prime implicants and covered 1-cells.
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Figure 4-35 F = ΣW,X,Y,Z(2,6,7,9,13,15): (a) Karnaugh map; (b) prime 
implicants and distinguished 1-cells; (c) reduced map after 
removal of essential prime implicants and covered 1-cells.
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remaining problem, which we can complete in the usual way to find a tentative
minimal sum. We repeat this process starting with all other prime implicants that
cover the starting 1-cell, generating a different tentative minimal sum from each
starting point. We may get stuck along the way and have to apply the branching
method recursively. Finally, we examine all of the tentative minimal sums that
we generated in this way and select one that is truly minimal.

4.3.6 Simplifying Products of Sums
Using the principle of duality, we can minimize product-of-sums expressions by
looking at the 0s on a Karnaugh map. Each 0 on the map corresponds to a
maxterm in the canonical product of the logic function. The entire process in the
preceding subsection can be reformulated in a dual way, including the rules for
writing sum terms corresponding to circled sets of 0s, in order to find a minimal
product. 

Fortunately, once we know how to find minimal sums, there’s an easier
way to find the minimal product for a given logic function F. The first step is to
complement F to obtain F′. Assuming that F is expressed as a minterm list or a
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Figure 4-36 F = ΣW,X,Y,Z(1,5,7,9,11,15): (a) Karnaugh map; (b) prime
implicants; (c) a minimal sum; (d) another minimal sum.
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The remainder of the procedure is the same. In particular, we look for
distinguished 1-cells and not distinguished d-cells, and we include only the
corresponding essential prime implicants and any others that are needed to cover
all the 1s on the map. In Figure 4-37, the two essential prime implicants are
sufficient to cover all of the 1s on the map. Two of the d’s also happen to be
covered, so F will be 1 for don’t-care input combinations 10 and 11, and 0 for
the other don’t-cares.

Some HDLs, including ABEL, provide a means for the designer to specify
don’t-care inputs, and the logic-minimization program takes these into account
when computing a minimal sum.

*4.3.8 Multiple-Output Minimization
Most practical combinational logic circuits require more than one output. We
can always handle a circuit with n outputs as n independent single-output design
problems. However, in doing so, we may miss some opportunities for optimiza-
tion. For example, consider the following two logic functions: 

Figure 4-38 shows the design of F and G as two independent single-output
functions. However, as shown in Figure 4-39, we can also find a pair of sum-of-
products expressions that share a product term, such that the resulting circuit has
one fewer gate than our original design.

F = ΣX,Y,Z(3,6,7)

G = ΣX,Y,Z(0,1,3) 
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Figure 4-38 Treating a 2-output design as two independent single-output
designs: (a) Karnaugh maps; (b) “minimal” circuit.
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When we design multiple-output combinational circuits using discrete
gates, as in an ASIC, product-term sharing obviously reduces circuit size and
cost. In addition, PLDs contain multiple copies of the sum-of-products structure
that we’ve been learning how to minimize, one per output, and some PLDs allow
product terms to be shared among multiple outputs. Thus, the ideas introduced
in this subsection are used in many logic-minimization programs.

You probably could have “eyeballed” the Karnaugh maps for F and G in
Figure 4-39 and discovered the minimal solution. However, larger circuits can
be minimized only with a formal multiple-output minimization algorithm. We’ll
outline the ideas in such an algorithm here; details can be found in the
References.

The key to successful multiple-output minimization of a set of n functions
is to consider not only the n original single-output functions, but also “product
functions.” An m-product function of a set of n functions is the product of m of
the functions, where 2 ≤ m ≤ n. There are 2n − n − 1 such functions. Fortunately,
n = 2 in our example and there is only one product function, F ⋅ G, to consider.
The Karnaugh maps for F, G, and F ⋅ G are shown in Figure 4-40; in general, the
map for an m-product function is obtained by ANDing the maps of its m
components.

A multiple-output prime implicant of a set of n functions is a prime
implicant of one of the n functions or of one of the product functions. The
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first step in multiple-output minimization is to find all of the multiple-output
prime implicants. Each prime implicant of an m-product function is a possible
term to include in the corresponding m outputs of the circuit. If we were trying to
minimize a set of 8 functions, we would have to find the prime implicants for
28 − 8− 1 = 247 product functions as well as for the 8 given functions. Obviously,
multiple-output minimization is not for the faint-hearted!

Once we have found the multiple-output prime implicants, we try to
simplify the problem by identifying the essential ones. A distinguished 1-cell of
a particular single-output function F is a 1-cell that is covered by exactly one
prime implicant of F or of the product functions involving F. The distinguished
1-cells in Figure 4-40 are shaded. An essential prime implicant of a particular
single-output function is one that contains a distinguished 1-cell. As in single-
output minimization, the essential prime implicants must be included in a
minimum-cost solution. Only the 1-cells that are not covered by essential prime
implicants are considered in the remainder of the algorithm.

The final step is to select a minimal set of prime implicants to cover the
remaining 1-cells. In this step we must consider all n functions simultaneously,
including the possibility of sharing; details of this procedure are discussed in the
References. In the example of Figure 4-40(c), we see that there exists a single,
shared product term that covers the remaining 1-cell in both F and G.
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variable and its complement were connected to the same AND gate, which would
be silly. However, the circuit may have static-1 hazards. Their existence can be
predicted from a Karnaugh map where the product terms corresponding to the
AND gates in the circuit are circled.

Figure 4-46(a) shows the Karnaugh map for the circuit of Figure 4-44. It is
clear from the map that there is no single product term that covers both input
combinations X,Y,Z = 111 and X,Y,Z = 110. Thus, intuitively, it is possible for
the output to “glitch” momentarily to 0 if the AND gate output that covers one of
the combinations goes to 0 before the AND gate output covering the other input
combination goes to 1. The way to eliminate the hazard is also quite apparent:
Simply include an extra product term (AND gate) to cover the hazardous input
pair, as shown in Figure 4-46(b). The extra product term, it turns out, is the
consensus of the two original terms; in general, we must add consensus terms to
eliminate hazards. The corresponding hazard-free circuit is shown in
Figure 4-47.

Another example is shown in Figure 4-48. In this example, three product
terms must be added to eliminate the static-1 hazards.

A properly designed two-level product-of-sums (OR-AND) circuit has no
static-1 hazards. It may have static-0 hazards, however. These hazards can be
detected and eliminated by studying the adjacent 0s in the Karnaugh map, in a
manner dual to the foregoing.
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Figure 4-45 Circuit with static-0 hazards: (a) logic diagram; (b) timing diagram.
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*4.5.3 Dynamic Hazards
A dynamic hazard is the possibility of an output changing more than once as the
result of a single input transition. Multiple output transitions can occur if there
are multiple paths with different delays from the changing input to the changing
output.

For example, consider the circuit in Figure 4-49; it has three different paths
from input X to the output F. One of the paths goes through a slow OR gate, and
another goes through an OR gate that is even slower. If the input to the circuit is
W,X,Y,Z = 0,0,0,1, then the output will be 1, as shown. Now suppose we change
the X input to 1. Assuming that all of the gates except the two marked “slow” and
“slower” are very fast, the transitions shown in black occur next, and the output
goes to 0. Eventually, the output of the “slow” OR gate changes, creating the
transitions shown in nonitalic color, and the output goes to 1. Finally, the output
of the “slower” OR gate changes, creating the transitions shown in italic color,
and the output goes to its final state of 0.

Dynamic hazards do not occur in a properly designed two-level AND-OR
or OR-AND circuit, that is, one in which no variable and its complement are con-
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hazard eliminated.
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The problem is that ABEL doesn’t handle don’t-cares in test-vector inputs
the way that it should. For example, by all rights, test vector 1 should test 32
distinct input combinations corresponding to all 32 possible combinations of
don’t-care inputs ENABLEA, EXITING, WINDOW, DOOR, and GARAGE. But it doesn’t.
In this situation, the ABEL compiler interprets “don’t care” as “the user doesn’t
care what input value I use,” and it just assigns 0 to all don’t-care inputs in a test
vector. In this example, you could have incorrectly written the output equation as
“F = PANIC & !ENABLEA # ENABLEA & ...”; the test vectors would still pass, even
though the panic button would work only when the system is disabled. 

The second use of test vectors is in physical device testing. Most physical
defects in logic devices can be detected using the single stuck-at fault model,
which assumes that any physical defect is equivalent to having a single gate
input or output stuck at a logic 0 or 1 value. Just putting together a set of test
vectors that seems to exercise a circuit’s functional specifications, as we did in
Table 4-24, doesn’t guarantee that all single stuck-at faults can be detected. The
test vectors have to be chosen so that every possible stuck-at fault causes an
incorrect value at the circuit output for some test-vector input combination. 

Table 4-25 shows a complete set of test vectors for the alarm circuit when
it is realized as a two-level sum-of-products circuit. The first four vectors check
for stuck-at-1 faults on the OR gate, and the last three check for stuck-at-0 faults
on the AND gates; it turns out that this is sufficient to detect all single stuck-at
faults. If you know something about fault testing you can generate test vectors
for small circuits by hand (as I did in this example), but most designers use auto-
mated third-party tools to create high-quality test vectors for their PLD designs.

test_vectors
([PANIC,ENABLEA,EXITING,WINDOW,DOOR,GARAGE] -> [ALARM])
[     1,      X,      X,     X,   X,     X] -> [    1];  "1
[     0,      0,      X,     X,   X,     X] -> [    0];  "2
[     0,      1,      1,     X,   X,     X] -> [    0];  "3
[     0,      1,      0,     0,   X,     X] -> [    1];  "4
[     0,      1,      0,     X,   0,     X] -> [    1];  "5
[     0,      1,      0,     X,   X,     0] -> [    1];  "6
[     0,      1,      0,     1,   1,     1] -> [    0];  "7

Tab le 4-24
Test vectors for the 
alarm circuit program 
in Table 4-11.

test_vectors
([PANIC,ENABLEA,EXITING,WINDOW,DOOR,GARAGE] -> [ALARM])
[     1,      0,      1,     1,   1,     1] -> [    1];  "1
[     0,      1,      0,     0,   1,     1] -> [    1];  "2
[     0,      1,      0,     1,   0,     1] -> [    1];  "3
[     0,      1,      0,     1,   1,     0] -> [    1];  "4
[     0,      0,      0,     0,   0,     0] -> [    0];  "5
[     0,      1,      1,     0,   0,     0] -> [    0];  "6
[     0,      1,      0,     1,   1,     1] -> [    0];  "7

Tab le 4-25
Single stuck-at fault 
test vectors for the 
minimal sum-of-
products realization 
of the alarm circuit.

single stuck-at fault 
model


