CONTENTS

PREFACE xv

1 INTRODUCTION 1
 1.1 About Digital Design 1
 1.2 Analog versus Digital 3
 1.3 Digital Devices 6
 1.4 Electronic Aspects of Digital Design 7
 1.5 Software Aspects of Digital Design 8
 1.6 Integrated Circuits 11
 1.7 Programmable Logic Devices 14
 1.8 Application-Specific ICs 16
 1.9 Printed-Circuit Boards 17
 1.10 Digital-Design Levels 18
 1.11 The Name of the Game 22
 1.12 Going Forward 23
Drill Problems 23

2 NUMBER SYSTEMS AND CODES 25
 2.1 Positional Number Systems 26
 2.2 Octal and Hexadecimal Numbers 27
 2.3 General Positional-Number-System Conversions 29
 2.4 Addition and Subtraction of Nondecimal Numbers 32
 2.5 Representation of Negative Numbers 34
 2.5.1 Signed-Magnitude Representation 2.5.2 Complement Number Systems
 2.5.3 Radix-Complement Representation
 2.5.4 Two’s-Complement Representation
 2.5.5 Diminished Radix-Complement Representation
 2.5.6 Ones’-Complement Representation 2.5.7 Excess Representations
 2.6 Two’s-Complement Addition and Subtraction 39
 2.6.1 Addition Rules 2.6.2 A Graphical View 2.6.3 Overflow
 2.6.4 Subtraction Rules 2.6.5 Two’s-Complement and Unsigned Binary Numbers
 2.7 Ones’-Complement Addition and Subtraction 44
 2.8 Binary Multiplication 45
2.9 Binary Division 47
2.10 Binary Codes for Decimal Numbers 48
2.11 Gray Code 51
2.12 Character Codes 53
2.13 Codes for Actions, Conditions, and States 53
2.14 n-Cubes and Distance 57
2.15 Codes for Detecting and Correcting Errors 58
 2.15.1 Error-Detecting Codes
 2.15.2 Error-Correcting and Multiple-Error-Detecting Codes
 2.15.3 Hamming Codes
 2.15.4 CRC Codes
 2.15.5 Two-Dimensional Codes
 2.15.6 Checksum Codes
 2.15.7 m-out-of-n Codes
2.16 Codes for Serial Data Transmission and Storage 69
 2.16.1 Parallel and Serial Data
 2.16.2 Serial Line Codes
References 73
Drill Problems 74
Exercises 76

3 DIGITAL CIRCUITS 79
3.1 Logic Signals and Gates 80
3.2 Logic Families 84
3.3 CMOS Logic 86
 3.3.1 CMOS Logic Levels
 3.3.2 MOS Transistors
 3.3.3 Basic CMOS Inverter Circuit
 3.3.4 CMOS NAND and NOR Gates
 3.3.5 Fan-In
 3.3.6 Noninverting Gates
 3.3.7 CMOS AND-OR-INVERT and OR-AND-INVERT Gates
3.4 Electrical Behavior of CMOS Circuits 96
 3.4.1 Overview
 3.4.2 Data Sheets and Specifications
3.5 CMOS Static Electrical Behavior 101
 3.5.1 Logic Levels and Noise Margins
 3.5.2 Circuit Behavior with Resistive Loads
 3.5.3 Circuit Behavior with Nonideal Inputs
 3.5.4 Fanout
 3.5.5 Effects of Loading
 3.5.6 Unused Inputs
 3.5.7 How to Destroy a CMOS Device
3.6 CMOS Dynamic Electrical Behavior 114
 3.6.1 Transition Time
 3.6.2 Propagation Delay
 3.6.3 Power Consumption
 3.6.4 Current Spikes and Decoupling Capacitors
 3.6.5 Inductive Effects
 3.6.6 Simultaneous Switching and Ground Bounce
3.7 Other CMOS Input and Output Structures 129
 3.7.1 Transmission Gates
 3.7.2 Schmitt-Trigger Inputs
 3.7.3 Three-State Outputs
 3.7.4 Open-Drain Outputs
 3.7.5 Driving LEDs
 3.7.6 Multisource Buses
 3.7.7 Wired Logic
 3.7.8 Pull-Up Resistors
3.8 CMOS Logic Families 141
 3.8.1 HC and HCT 3.8.2 AHC and AHCT
 3.8.3 HC, HCT, AHC, and AHCT Electrical Characteristics
 3.8.4 AC and ACT 3.8.5 FCT and FCT-T
 3.8.6 FCT-T Electrical Characteristics
3.9 Low-Voltage CMOS Logic and Interfacing 151
 3.9.1 3.3-V LVTTL and LVCMOS Logic 3.9.2 5-V Tolerant Inputs
 3.9.3 5-V Tolerant Outputs 3.9.4 TTL/LVTTL Interfacing Summary
 3.9.5 Logic Levels Less Than 3.3 V
3.10 Bipolar Logic 155
 3.10.1 Diode Logic 3.10.2 Bipolar Junction Transistors
 3.10.3 Transistor-Transistor Logic
 3.10.4 TTL Logic Levels and Noise Margins 3.10.5 TTL Fanout
 3.10.6 TTL Families 3.10.7 A TTL Data Sheet
 3.10.8 CMOS/TTL Interfacing 3.10.9 Emitter-Coupled Logic

References 174
Drill Problems 175
Exercises 179

4 COMBINATIONAL LOGIC DESIGN PRINCIPLES 183
4.1 Switching Algebra 184
 4.1.1 Axioms 4.1.2 Single-Variable Theorems
 4.1.3 Two- and Three-Variable Theorems
 4.1.4 n-Variable Theorems 4.1.5 Duality
 4.1.6 Standard Representations of Logic Functions
4.2 Combinational-Circuit Analysis 199
4.3 Combinational-Circuit Synthesis 205
 4.3.1 Circuit Descriptions and Designs 4.3.2 Circuit Manipulations
 4.3.3 Combinational-Circuit Minimization 4.3.4 Karnaugh Maps
 4.3.5 Minimizing Sums of Products 4.3.6 Other Minimization Topics
 4.3.7 Programmed Minimization Methods
4.4 Timing Hazards 224
 4.4.1 Static Hazards 4.4.2 Finding Static Hazards Using Maps
 4.4.3 Dynamic Hazards 4.4.4 Designing Hazard-Free Circuits

References 229
Drill Problems 230
Exercises 232

5 HARDWARE DESCRIPTION LANGUAGES 237
5.1 HDL-Based Digital Design 238
 5.1.1 Why HDLs? 5.1.2 HDL Tool Suites
 5.1.3 HDL-Based Design Flow
5.2 The ABEL Hardware Description Language 243
 5.2.1 ABEL Program Structure 5.2.2 ABEL Compiler Operation
 5.2.3 WHEN Statements and Equation Blocks 5.2.4 Truth Tables
 5.2.5 Ranges, Sets, and Relations 5.2.6 Test Vectors
 5.2.7 Additional ABEL Features
5.3 The VHDL Hardware Description Language 256
5.3.1 Program Structure 5.3.2 Types, Constants, and Arrays
5.3.3 Functions and Procedures 5.3.4 Libraries and Packages
5.3.5 Structural Design Elements 5.3.6 Dataflow Design Elements
5.3.7 Behavioral Design Elements 5.3.8 The Time Dimension
5.3.9 Simulation 5.3.10 Test Benches
5.3.11 VHDL Features for Sequential Logic Design 5.3.12 Synthesis

5.4 The Verilog Hardware Description Language 290
5.4.1 Program Structure
5.4.2 Logic System, Nets, Variables, and Constants
5.4.3 Vectors and Operators 5.4.4 Arrays
5.4.5 Logical Operators and Expressions 5.4.6 Compiler Directives
5.4.7 Structural Design Elements 5.4.8 Dataflow Design Elements
5.4.9 Behavioral Design Elements (Procedural Code)
5.4.10 Functions and Tasks 5.4.11 The Time Dimension
5.4.12 Simulation 5.4.13 Test Benches
5.4.14 Verilog Features for Sequential Logic Design 5.4.15 Synthesis

References 335
Drill Problems 337
Exercises 338

6 COMBINATIONAL LOGIC DESIGN PRACTICES 341
6.1 Documentation Standards 342
6.1.1 Block Diagrams 6.1.2 Gate Symbols
6.1.3 Signal Names and Active Levels 6.1.4 Active Levels for Pins
6.1.5 Bubble-to-Bubble Logic Design
6.1.6 Signal Naming in HDL Programs 6.1.7 Drawing Layout
6.1.8 Buses 6.1.9 Additional Schematic Information

6.2 Circuit Timing 362
6.2.1 Timing Diagrams 6.2.2 Propagation Delay
6.2.3 Timing Specifications 6.2.4 Timing Analysis
6.2.5 Timing Analysis Tools

6.3 Combinational PLDs 370
6.3.1 Programmable Logic Arrays
6.3.2 Programmable Array Logic Devices
6.3.3 Generic Array Logic Devices
6.3.4 Complex Programmable Logic Devices (CPLDs)
6.3.5 CMOS PLD Circuits 6.3.6 Device Programming and Testing

6.4 Decoders 384
6.4.1 Binary Decoders
6.4.2 Logic Symbols for Larger-Scale Elements
6.4.3 The 74x138 3-to-8 Decoder 6.4.4 Cascading Binary Decoders
6.4.5 Decoders in ABEL and PLDs 6.4.6 Decoders in VHDL
6.4.7 Decoders in Verilog 6.4.8 Seven-Segment Decoders

6.5 Encoders 408
6.5.1 Priority Encoders 6.5.2 The 74x148 Priority Encoder
6.5.3 Encoders in ABEL and PLDs 6.5.4 Encoders in VHDL
6.5.5 Encoders in Verilog
6.6 Three-State Devices 418
 6.6.1 Three-State Buffers 6.6.2 Standard MSI Three-State Buffers
 6.6.3 Three-State Outputs in ABEL and PLDs
 6.6.4 Three-State Outputs in VHDL
 6.6.5 Three-State Outputs in Verilog

6.7 Multiplexers 432
 6.7.1 Standard MSI Multiplexers 6.7.2 Expanding Multiplexers
 6.7.3 Multiplexers, Demultiplexers, and Buses
 6.7.4 Multiplexers in ABEL and PLDs 6.7.5 Multiplexers in VHDL
 6.7.6 Multiplexers in Verilog

6.8 Exclusive-OR Gates and Parity Circuits 447
 6.8.1 Exclusive-OR and Exclusive-NOR Gates 6.8.2 Parity Circuits
 6.8.3 The 74x280 9-Bit Parity Generator
 6.8.4 Parity-Checking Applications
 6.8.5 Exclusive-OR Gates and Parity Circuits in ABEL and PLDs
 6.8.6 Exclusive-OR Gates and Parity Circuits in VHDL
 6.8.7 Exclusive-OR Gates and Parity Circuits in Verilog

6.9 Comparators 458
 6.9.1 Comparator Structure 6.9.2 Iterative Circuits
 6.9.3 An Iterative Comparator Circuit
 6.9.4 Standard MSI Magnitude Comparators
 6.9.5 Comparators in HDLs 6.9.6 Comparators in ABEL and PLDs
 6.9.7 Comparators in VHDL 6.9.8 Comparators in Verilog

6.10 Adders, Subtractors, and ALUs 474
 6.10.1 Half Adders and Full Adders 6.10.2 Ripple Adders
 6.10.3 Subtractors 6.10.4 Carry-Lookahead Adders
 6.10.5 MSI Adders 6.10.6 MSI Arithmetic and Logic Units
 6.10.7 Group-Carry Lookahead 6.10.8 Adders in ABEL and PLDs
 6.10.9 Adders in VHDL 6.10.10 Adders in Verilog

6.11 Combinational Multipliers 494
 6.11.1 Combinational Multiplier Structures
 6.11.2 Multiplication in ABEL and PLDs 6.11.3 Multiplication in VHDL
 6.11.4 Multiplication in Verilog

References 508
Drill Problems 509
Exercises 511

7 SEQUENTIAL LOGIC DESIGN PRINCIPLES 521

7.1 Bistable Elements 523
 7.1.1 Digital Analysis 7.1.2 Analog Analysis
 7.1.3 Metastable Behavior

7.2 Latches and Flip-Flops 526
 7.2.1 S-R Latch 7.2.2 S-R Latch 7.2.3 S-R Latch with Enable
 7.2.4 D Latch 7.2.5 Edge-Triggered D Flip-Flop
 7.2.6 Edge-Triggered D Flip-Flop with Enable 7.2.7 Scan Flip-Flop
 7.2.8 Master/Slave S-R Flip-Flop 7.2.9 Master/Slave J-K Flip-Flop
 7.2.10 Edge-Triggered J-K Flip-Flop 7.2.11 T Flip-Flop
7.3 Clocked Synchronous State-Machine Analysis 542
 7.3.1 State-Machine Structure 7.3.2 Output Logic
 7.3.3 Characteristic Equations
 7.3.4 Analysis of State Machines with D Flip-Flops

7.4 Clocked Synchronous State-Machine Design 553
 7.4.1 State-Table Design Example 7.4.2 State Minimization
 7.4.3 State Assignment 7.4.4 Synthesis Using D Flip-Flops
 7.4.5 Synthesis Using J-K Flip-Flops
 7.4.6 More Design Examples Using D Flip-Flops

7.5 Designing State Machines Using State Diagrams 570

7.6 State-Machine Synthesis Using Transition Lists 577
 7.6.1 Transition Equations 7.6.2 Excitation Equations
 7.6.3 Variations on the Scheme 7.6.4 Realizing the State Machine

7.7 Another State-Machine Design Example 580
 7.7.1 The Guessing Game 7.7.2 Unused States
 7.7.3 Output-Coded State Assignment
 7.7.4 “Don’t-Care” State Codings

7.8 Decomposing State Machines 587

7.9 Feedback Sequential-Circuit Analysis 590
 7.9.1 Basic Analysis
 7.9.2 Analyzing Circuits with Multiple Feedback Loops
 7.9.3 Races 7.9.4 State Tables and Flow Tables
 7.9.5 CMOS D Flip-Flop Analysis

7.10 Feedback Sequential-Circuit Design 601
 7.10.1 Latches 7.10.2 Designing Fundamental-Mode Flow Table
 7.10.3 Flow-Table Minimization 7.10.4 Race-Free State Assignment
 7.10.5 Excitation Equations 7.10.6 Essential Hazards
 7.10.7 Summary

7.11 ABEL Sequential-Circuit Design Features 612
 7.11.1 Registered Outputs 7.11.2 State Diagrams
 7.11.3 External State Memory 7.11.4 Specifying Moore Outputs
 7.11.5 Specifying Mealy and Pipelined Outputs with WITH
 7.11.6 Test Vectors

7.12 Sequential-Circuit Design with VHDL 625
 7.12.1 Clocked Circuits 7.12.2 State-Machine Design with VHDL
 7.12.3 A VHDL State-Machine Example
 7.12.4 State Assignment in VHDL 7.12.5 Pipelined Outputs in VHDL
 7.12.6 Direct VHDL Coding Without a State Table
 7.12.7 More VHDL State-Machine Examples
 7.12.8 Specifying Flip-Flops in VHDL
 7.12.9 VHDL State-Machine Test Benches
 7.12.10 Feedback Sequential Circuits

7.13 Sequential-Circuit Design with Verilog 646
 7.13.3 A Verilog State-Machine Example
 7.13.4 Pipelined Outputs in Verilog
 7.13.5 Direct Verilog Coding Without a State Table
 7.13.6 More Verilog State-Machine Examples
9 MEMORY, CPLDS, AND FPGAS 799

9.1 Read-Only Memory 800
 9.1.1 Using ROMs for "Random" Combinational Logic Functions
 9.1.2 Internal ROM Structure 9.1.3 Two-Dimensional Decoding
 9.1.4 Commercial ROM Types
 9.1.5 ROM Control Inputs and Timing 9.1.6 ROM Applications

9.2 Read/Write Memory 821

9.3 Static RAM 822
 9.3.1 Static-RAM Inputs and Outputs
 9.3.2 Static-RAM Internal Structure
 9.3.3 Static-RAM Timing 9.3.4 Standard Static RAMs
 9.3.5 Synchronous SRAM

9.4 Dynamic RAM 833
 9.4.1 Dynamic-RAM Structure 9.4.2 SDRAM Timing
 9.4.3 DDR SDRAMs

9.5 Complex Programmable Logic Devices 840
 9.5.1 Xilinx XC9500 CPLD Family
 9.5.2 Function-Block Architecture
 9.5.3 Input/Output-Block Architecture 9.5.4 Switch Matrix

9.6 Field-Programmable Gate Arrays 850
 9.6.1 Xilinx XC4000 FPGA Family 9.6.2 Configurable Logic Block
 9.6.3 Input/Output Block 9.6.4 Programmable Interconnect

References 859
Drill Problems 859
Exercises 860

INDEX 863