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8.1 In the first three printings, change “RAMBANK0” to “RAMBANK1” in the third line of the exercise. The results are
the same. The new expression describes exactly the input combinations in which the 8 high-order bits of ABUS

are 000000012, the same as the original expression using don’t-cares.

8.2 The 16-series devices have  or 2048 fuses (see Figure 10–2). The 20-series devices have  or
2560 fuses. 

8.3 There are  fuses in the AND array (see Figure 10–4). Each of the eight macrocells has one fuse
to control the output polarity and one fuse to select registered vs. combinational configuration in the 16V8R, or
to assert the output-enable in the 16V8S. There are also two global fuses to select the overall configuration
(16V8C, 16V8R, or 16V8S). The total number of fuses is therefore .

A real 16V8 (depending on the manufacturer) has at least 64 additional fuses to disable individual product
terms, 64 user-programmable fuses that do nothing but store a user code, and a security fuse. (Once the security
fuse is programmed, the rest of the fuse pattern can no longer be read.) 

8.5 The  column below gives the answers in MHz.

Part numbers Suffix

PAL16L8, PAL16Rx, PAL20L8, PAL20Rx  -5  5  4 –  4.5  0 117.7 117.7

PAL16L8, PAL16Rx, PAL20L8, PAL20Rx  -7  7.5  6.5 –  7  0 74.1 74.1

PAL16L8, PAL16Rx, PAL20L8, PAL20Rx  -10  10  8 –  10  0 55.6 55.6

GAL22V10  -25  25  15  13  15  0 33.3 35.7

64 32× 64 40×

64 32× 2048=

2048 16 2+ + 2066=

fmaxE

tPD tCO tCF tSU tH fmaxE fmaxI
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8.6 The  column above gives the answers in MHz. 

8.7
module Eight_Bit_Reg
title ’8-bit Edge-Triggered Register’
Z74X374 device ’P16V8R’;

" Input pins
CLK, !OE                          pin 1, 11; 
D1, D2, D3, D4, D5, D6, D7, D8    pin 2, 3, 4, 5, 6, 7, 8, 9;

" Output pins 
Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8    pin 19, 18, 17, 16, 15, 14, 13, 12;

" Set definitions 
D = [D1,D2,D3,D4,D5,D6,D7,D8]; 
Q = [Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8];

equations

Q := D;

end Eight_Bit_Reg 

8.10 If EN or CLK is 0, the output will be stable. If both are 1, the results are unpredictable, since they depend on
circuit timing. It is certain that the circuit’s output will be unstable as long as this condition is true. 

8.11 The counter is modified to return to a count of 0 when count 9 is reached.

8.13 The counting direction is controlled by QD: count up when QD=1, count down when QD=0. A load occurs
when the counter is in the terminal state, 1111 when counting up, 0000 when counting down. The MSB is com-
plemented during a load and the other bits are unchanged.

Let us assume that the counter is initially in one of the states 0000–0111. Then the counter counts down
(QD=0). Upon reaching state 0000, it loads 1000 and subsequently counts up (QD=1). Upon reaching state
1111, the counter loads 0111, and subsequently counts down, repeating the cycle.

module Z74x162

title '4-bit Decade Counter' 

"Z74X162 device 'P16V8R'; 

" Input pins 

CLK, !OE                          pin 1, 11; 

A, B, C, D                        pin 2, 3, 4, 5; 

!LD, !CLR, ENP, ENT               pin 6, 7, 8, 9; 

" Output pins 

QA, QB, QC, QD                    pin 19, 18, 17, 16 istype 'reg';

RCO                               pin 15; 

" Set definitions 

INPUT = [ D,  C,  B,  A ]; 

COUNT = [QD, QC, QB, QA ]; 

equations 

COUNT.CLK = CLK; 

COUNT := !CLR & (  LD & INPUT 

                # !LD &  (ENT & ENP) & (COUNT < 9) & (COUNT + 1) 

                # !LD &  (ENT & ENP) & (COUNT == 9) & 0 

                # !LD & !(ENT & ENP) &  COUNT); 

RCO = (COUNT == 9) & ENT; 

end Z74x162

fmaxI
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If the counter is initially in one of the states 1000–1111, the same cyclic behavior is observed. The counting
sequence has a period of 16 and is, in decimal,

8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, 1, 0, 8, 9, ...

If only the three LSBs are observed, the sequence is

0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0, 0, 1, ...

8.14 The only difference between a ’163 and a ’161 is that the CLR_L input of ’161 is asynchronous. Thus, the
counter will go from state 1010 to state 0000 immediately, before the next clock tick, and go from state 0000 to
state 0001 at the clock tick. Observing the state just before each clock tick, it is therefore a modulo-10 counter,
with the counting sequence 0, 1, ..., 9, 0, 1, .... 

Note that this type of operation is not recommended, because the width of the CLR_L pulse is not well con-
trolled. That is, the NAND gate will negate the CLR_L pulse as soon as either one of its inputs goes to 0. If, say,
the counter’s QB output clears quickly, and its QD output clears slowly, it is possible for CLR_L to be asserted
long enough to clear QB but not QD, resulting in an unexpected next state of 1000, or possibly metastability of
the QD output.

8.17 The path from the Q1 counter output (B decoder input) to the Y2_L output has 10 ns more delay than the Q2 and
Q0 (C and A) paths. Let us examine the possible Y2_L glitches in Figure 8–43 with this in mind:

3→4 (011→100) Because of the delay in the Q1 path, this transition will actually look like 011→110→100.
The Y6_L output will have a 10-ns glitch, but Y2_L will not.

7→0 (111→000) Because of the delay in the Q1 path, this transition will actually look like 111→010→000.
The Y2_L output will have a 10-ns glitch, but the others will not.

8.19 The delay calculation is different, depending on the starting state.

In the INIT state, U7 and U8 take 21 ns to propagate the CLEAR signal to the outputs. Then U6 requires 20 ns
setup time on its D inputs while U3 requires 20 ns setup time on its RIN input. This implies a minimum clock
period of 41 ns, assuming zero delay from the control unit.

In states M1–M8, the minimum clock period depends on the delay of the combinational logic in the control unit
that asserts SELSUM when MPY0 is asserted. However, the most obvious way to do this is to connect MPY0
directly to SELSUM, creating a delay of 0 ns. This assumption is made below. Also, it is assumed that MPY0 is
1 to find the worst case. The figure on the next page shows the worst-case path, in heavy lines, to be 106 ns.
Since we would like to use the same clock for all states, the minimum clock period is 106 ns.
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8.20 The synchronizer fails if META has not settled by the beginning of the setup-time window for FF2, which is
5 ns before the clock edge. Since the clock period is 40 ns, the available metastability resolution time is 35 ns.
The MTBF formula is

Substituting the proper values of and  for the ’F74, and of  and  for the problem, we calculate

8.22 Refer to the sample data sheet on page 169 of the text: “Not more than one output should be shorted at a time;
duration of short-circuit should not exceed one second.” In the switch debounce circuit, the short lasts only for
a few tens of nanoseconds, so it’s OK. 

8.23 CMOS outputs can “latch up” under certain conditions. According to the Motorola High-Speed CMOS Logic
Data book (1988 edition, pp. 4–10), a 74HCT output can latch up if a voltage outside the range

 is forced on the output by an external source. In a switch debounce circuit using
74HCT04s, the switch connection to ground is an external source, but the voltage (0 V) is within the acceptable
range and should not be a problem.

Another potential problem is excessive short-circuit current, but again the data book indicates that shorting the
output briefly is not a problem, as long as “the maximum package power dissipation is not violated” (i.e., the
short is not maintained for a long time).

Similar considerations apply to 74AC and 74ACT devices, but in the balance, such devices are not recom-
mended in the switch-debounce application, as we’ll explain. On one hand, typical 74AC/74ACT devices are
even less susceptible to latch-up than 74HCT devices. (For example, see the Motorola FACT Data book, 1988
edition, pp. 2–9.) On the other hand, 74AC/74ACT’s high performance may create noise problems for other
devices in a system. In particular, when the 74AC/74ACT HIGH output is shorted to ground, it may momen-
tarily drag the local 5 V power-supply rail down with it, especially if the decoupling capacitors are small, far
away, or missing. This will in turn cause incorrect operation of the other, nearby logic devices. 

8.25 TTL inputs require significant current, especially in the LOW state. The bus holder cannot supply enough
current unless the series resistor is made much smaller, which then creates a significant load on the bus.

MTBF tr( )
tr τ⁄( )exp

T0 f⋅ a⋅
------------------------=

τ T0 f a

MTBF 35ns( ) 35 0.4⁄( )exp

2.0 10 4– 106 106⋅ ⋅ ⋅
------------------------------------------- 2 1028s⋅≈=

0.5– Vout VCC 0.5V+≤≤
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8.26 .

8.28 The maximum delay from clock to output of a 74HCT74 flip-flop is 44 ns. For a 4-bit ripple counter, the delay
ripples through four such stages for a total maximum delay of 176 ns. Similarly, the maximum delays using
74AHCT and 74LS74 flip-flops are 40 ns and 160 ns, respectively.

8.32

library IEEE;

use IEEE.std_logic_1164.all;

--

-- Exercise 8-26 

-- This code combines the address latch and

-- and the decoder and its latch

entity latch_decode is

port (

abus : in std_logic_vector ( 31 downto 0);

avalid : in std_logic;

la : out std_logic_vector ( 19 downto 0);

romcs, ramcs0, ramcs1, ramcs2 : out std_logic

);

end entity latch_decode;

architecture behave of latch_decode is

begin

process (avalid, abus)

begin

if (avalid = '1') then 

la <= abus (19 downto 0);

end if;

end process;

process (abus, avalid)

variable rom, ram1, ram2, ram0 : std_logic_vector (11 downto 0);

begin

rom  := "111111111111";

ram0 := "000000000000";

ram1 := "000000010000";

ram2 := "000000100000";

If (avalid= '1') then

    if (abus (31 downto 20) = rom ) then romcs  <= '1'; else romcs  <= '0'; end if;

    if (abus (31 downto 20) = ram0) then ramcs0 <= '1'; else ramcs0 <= '0'; end if;

    if (abus (31 downto 20) = ram1) then ramcs1 <= '1'; else ramcs1 <= '0'; end if;

    if (abus (31 downto 20) = ram2) then ramcs2 <= '1'; else ramcs2 <= '0'; end if;

end if;

end process;

end behave;

tperiod(min) tpTQ 3tAND tsetup++=

fmax 1 tperiod(min)⁄=
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8.37

Inputs Current state Next state

CLR_L LD_L ENT ENP QD QC QB QA QD∗ QC∗ QB∗ QA∗

0 x x x x x x x 0 0 0 0

1 0 x x x x x x D C B A

1 1 0 x x x x x QD QC QB QA

1 1 x 0 x x x x QD QC QB QA

1 1 1 1 0 0 0 0 0 0 0 1

1 1 1 1 0 0 0 1 0 0 1 0

1 1 1 1 0 0 1 0 0 0 1 1

1 1 1 1 0 0 1 1 0 1 0 0

1 1 1 1 0 1 0 0 0 1 0 1

1 1 1 1 0 1 0 1 0 1 1 0

1 1 1 1 0 1 1 0 0 1 1 1

1 1 1 1 0 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0 1 0 0 1

1 1 1 1 1 0 0 1 0 0 0 0

1 1 1 1 1 0 1 0 1 0 1 1

1 1 1 1 1 0 1 1 0 1 0 0

1 1 1 1 1 1 0 0 1 1 0 1

1 1 1 1 1 1 0 1 0 1 0 0

1 1 1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0
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The minimum clock period is the sum of:

(a) The delay from the clock edge to any RCO output (35 ns).

(b) The delay from any RCO output to any ENP input, that is, two gate delays ( ).

(c) The setup time to the next clock edge required by the ENP inputs (20 ns).

Thus, the minimum clock period is 85 ns, and the corresponding maximum clock frequency is 11.76 MHz. 

8.41 To get even spacing, the strategy is for the MSB (N3) to select half the states, the ones where QA is 0. The next
bit down (N2) selects one-fourth of the states, the ones where QB is 0 and the less significant counter bits (i.e.,
QA) are all 1. Likewise, N1 selects the one-eighth of the states where QC is 0 and QB and QA are 1, and N0
selects the state where QD is 0 and QC, QB, and QA are all 1.  In this way, each non-1111 counter state is
assigned to one input bit.   

2 15⋅ 30 ns=
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8.53
--Chris Dunlap 

--Xilinx Applications

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

entity v74x163s is

generic(size : integer := 8);  --added generic

port (clk,clr_l,ld_l,enp,ent : in std_logic;

d : in std_logic_vector (size-1 downto 0); --changes range of input

q : out std_logic_vector (size-1 downto 0); --changes range of output

rco : out std_logic);

end v74x163s;

architecture v74x163_arch of v74x163s is

component synsercell is

  port (clk, ldnoclr, di, coclrorld,cntenp,cnteni : in std_logic;

   qi,cnteni1 : out std_logic);

end component;

signal ldnoclr,noclrorld : std_logic;

signal scnten : std_logic_vector (size downto 0); --creates a ranged temp with overflow room

begin

ldnoclr <= (not ld_l) and clr_l;

noclrorld <= ld_l and clr_l;

scnten(0) <= ent;

rco <= scnten(size);

gi: for i in 0 to size-1 generate --counts for size of counter

  U1: synsercell port map (clk, ldnoclr, noclrorld, enp, d(i), scnten(i), scnten(i+1), q(i));

  end generate;

end v74x163_arch;
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8.54                     
--**********************************

-- PROBLEM : WAKERLY - 8.54

-- FILES : 

--   8_54_top.vhd : top level file

--   8_54_par2ser.vhd : parallel to serial converter

--   8_54_control.vhd : control module

--   8_54_shift_synch.vhd : 8 bit shift register

--

-- DESCRIPTION : 

--   Creates a parallel to serial converter.

--   Data in is described as 8 x 8bit modules,

--   with a single 8 bit data bus that carries

--   data of the format given in Figure 8-55.

--   Each serial link has its own SYNCH(i) line;

--   the pulses should be staggered so SYNCH(i+1)

--   occurs 1 clock cycle after SYNCH(i).

--   

--   Because of this, the load_synch line should

--   also be staggered so the data transmitted 

--   over the serial link will correspond to its

--   associated SYNCH line.

--**********************************

-- library declarations

library IEEE;

use IEEE.std_logic_1164.all;

-- top level entity declaration

entity wak_8_54_top is

    port (

        data: in STD_LOGIC_VECTOR (63 downto 0);

        clock: in STD_LOGIC;

        synch: buffer STD_LOGIC_VECTOR (7 downto 0);

        sdata: out STD_LOGIC_VECTOR (7 downto 0)

    );

end wak_8_54_top;

architecture wak_8_54_arch of wak_8_54_top is

signal load_shift_master: std_logic;

signal synch_master: std_logic;

signal load_shift: std_logic_vector (7 downto 0);

--component declarations

component par2ser is

    port (

        clock: in STD_LOGIC;

        data: in STD_LOGIC_VECTOR (7 downto 0);

        load_shift: in STD_LOGIC;

        sdata: out STD_LOGIC

    );

end component;
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component control is

    port (

        clock: in STD_LOGIC;

        load_shift: out STD_LOGIC;

        synch: out STD_LOGIC

    );

end component;

component shift_synch is

    port (

        clock: in STD_LOGIC;

        synch_in: in STD_LOGIC;

        synch: buffer STD_LOGIC_VECTOR (7 downto 0)

    );

end component;

begin

--component instantiations

S1: shift_synch port map (clock=>clock, synch_in=>synch_master, synch=>synch);

S2: shift_synch port map (clock=>clock, synch_in=>load_shift_master, 

synch=>load_shift);

U1: par2ser port map (clock=>clock, data=>data(7 downto 0), load_shift=>load_shift(0), 

sdata=>sdata(0));

U2: par2ser port map (clock=>clock, data=>data(15 downto 8), 

load_shift=>load_shift(1), sdata=>sdata(1));

U3: par2ser port map (clock=>clock, data=>data(23 downto 16), 

load_shift=>load_shift(2), sdata=>sdata(2));

U4: par2ser port map (clock=>clock, data=>data(31 downto 24), 

load_shift=>load_shift(3), sdata=>sdata(3));

U5: par2ser port map (clock=>clock, data=>data(39 downto 32), 

load_shift=>load_shift(4), sdata=>sdata(4));

U6: par2ser port map (clock=>clock, data=>data(47 downto 40), 

load_shift=>load_shift(5), sdata=>sdata(5));

U7: par2ser port map (clock=>clock, data=>data(55 downto 48), 

load_shift=>load_shift(6), sdata=>sdata(6));

U8: par2ser port map (clock=>clock, data=>data(63 downto 56), 

load_shift=>load_shift(7), sdata=>sdata(7));

U9: control port map (clock=>clock, load_shift=>load_shift_master, 

synch=>synch_master);

 

end wak_8_54_arch;
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--*************************************

-- Basically an 8-bit shift register

--  takes the synch_in signal as an

--  input, and outputs an 8 bit signal,

--  each consecutive bit delayed by one

--  from the previous bit.

-- library declaration

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

-- top level entity declaration

entity shift_synch is

    port (

        clock: in STD_LOGIC;

        synch_in: in STD_LOGIC;

        synch: buffer STD_LOGIC_VECTOR (7 downto 0)

    );

end shift_synch;

architecture shift_synch_arch of shift_synch is

begin

-- low order synch signal is simply passed through

-- to output.  all others are delayed.

  synch(0) <= synch_in;

  process(clock)

  begin

    if clock'event and clock='1' then

    

      for I in 0 to 6 loop

        synch(I+1) <= synch(I);

      end loop;

    end if;

  end process;

  

end shift_synch_arch;
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--***************************************

-- Parallel to serial converter

--  Data is entered through 8 bit DATA bus

--  It is loaded into the register when

--  load_shift is low.  If load_shift is

--  high, shift data serially out through sdata

-- library declarations

library IEEE;

use IEEE.std_logic_1164.all;

-- top level entity declaration

entity par2ser is

    port (

        clock: in STD_LOGIC;

        data: in STD_LOGIC_VECTOR (7 downto 0);

        load_shift: in STD_LOGIC;

        sdata: out STD_LOGIC

    );

end par2ser;

architecture par2ser_arch of par2ser is

-- internal signal declaration

signal REG: STD_LOGIC_VECTOR(7 downto 0);

signal DIN: std_logic;

begin

  

-- DIN <= 0 will set the high order bit to be 

-- zero once data is loaded in.

DIN <= '0';

-- process to create shift register

--accomplished by simply taking the DIN signal

--and concatenating on the end the previous

--6 high order bits.

process (clock)

  begin

    if clock'event and clock='1' then  

      if load_shift = '0' then

   REG <= data;

      else 

        REG <= DIN & REG(7 downto 1);

      end if;

    end if;

  sdata <= REG(0);

end process;

end par2ser_arch;
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8.55 This is really the second paragraph of Exercise 8.54.

--******************************

-- Control logic

--  controls the loading of the

--  parallel to serial shift register

--  through the load_shift signal.

--  also, controls the synch word.  

--  this occurs every 256 clock cycles.

--library declaration

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

--top level entity declaration

entity control is

    port (

        clock: in STD_LOGIC;

        load_shift: out STD_LOGIC;

        synch: out STD_LOGIC

    );

end control;

architecture control_arch of control is

--internal signal declaration

signal COUNT: STD_LOGIC_VECTOR(7 downto 0);

signal load: STD_LOGIC;

begin

load <= '0';  --define constant

  

process (clock)

  begin

    if clock'event and clock='1' then  

    

      count <= count + 1;

    

      if count(2 downto 0) = "110" then

        load_shift <= load;

      else 

        load_shift <= not load;

      end if;

      

      if count = 254 then

        synch <= '1';

      else

        synch <= '0';

      end if;

    end if;

end process;

end control_arch;
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8.62 Regardless of the number of shift-register outputs connected to the odd-parity circuit, its output in state 00...00
is 0, and the 00...00 state persists forever. However, suppose that an odd number of shift-register outputs are
connected. Then the output of the odd-parity circuit in state 11...11 is 1, and the 11...11 state also persists for-
ever. In this case, the number of states in the “maximum-length” sequence can be no more than , since
two of the states persist forever. Therefore, if an LFSR counter generates a sequence of length , it must
have an even number of shift-register outputs connected to the odd-parity circuit. 

8.64 The figure below shows the effect of physically changing the odd-parity circuit to an even-parity circuit (i.e.,
inverting its output).

From Exercise 9.32, we know that an even number of shift-register outputs are connected to the parity circuit,
and we also know that complementing two inputs of an XOR gate does not change its output. Therefore, we can
redraw the logic diagram as shown below.
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Finally, we can move the inversion bubbles as shown below.

This circuit has exactly the same structure as Figure 8–68, except that the shift register stores complemented
data. When we look at the external pins of the shift register in the first figure in this solution, we are looking at
that complemented data. Therefore, each state in the counting sequence of the even-parity version (our first
figure) is the complement of the corresponding state in the odd-parity version (Figure 8–68). The odd-parity
version visits all states except 00...00, so the even-parity version visits all states except 11...11. 

N-bit
parallel-out
shift register

CLR

CLK
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RESET_L
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XN–3

X2

X1
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8.68    
--Johnny West

--Xilinx Applications

--8.68 : Design an iterative circuit for checking the parity of a 16-bit data

--       word with a single even-parity bit.

------------------------------------------------------------------------------------

------------

--This portion of the code constructs the iterative module that will cascaded 16 

--times in order to check the parity of a 16 bit word.

------------------------------------------------------------------------------------

------------

library IEEE;

use IEEE.std_logic_1164.all;

--Generic Iterative Module

entity Iterative_Module is

  port (

        carry_in, primary_in: in STD_LOGIC;

carry_out: out STD_LOGIC

   );

end Iterative_Module;

--An XOR is performed on the current parity of a word (carry_in) and the

--next bit in the word (boundary_in)

--Even parity produces a 0 and odd parity produces a 1 

architecture Parity_Check of Iterative_Module is

begin

  carry_out <= carry_in xor primary_in;

end Parity_Check;
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8.75 In the following design, RESET is not recognized until the end of phase 6. RESTART is still recognized at the
end of any phase; otherwise it would have no real use (i.e., only going back to phase 1 after the end of phase 6,

    

-----------------------------------------------------------------------------------

--This portion of the code cascades the interative module 16 times and connects the

--modules together.

-----------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

--Top level entity for checking the parity of a 16bit word

entity Parity_16bit is

  port (data_word: in STD_LOGIC_VECTOR (15 downto 0);

        parity: out STD_LOGIC                         );

end Parity_16bit;

        

--Architecture consists of 16 cascaded iterative modules

architecture Parity_16bit_arch of parity_16bit is

component Iterative_Module

  port (carry_in, primary_in: in STD_LOGIC;

carry_out: out STD_LOGIC    );

end component;

signal carry: STD_LOGIC_VECTOR (15 downto 0);

signal cin0: STD_LOGIC;

begin  

  cin0 <= '0';

  P0: Iterative_Module port map (cin0, data_word(0), carry(0)); 

  P1: Iterative_Module port map (carry(0), data_word(1), carry(1));

  P2: Iterative_Module port map (carry(1), data_word(2), carry(2));

  P3: Iterative_Module port map (carry(2), data_word(3), carry(3));

  P4: Iterative_Module port map (carry(3), data_word(4), carry(4));

  P5: Iterative_Module port map (carry(4), data_word(5), carry(5));

  P6: Iterative_Module port map (carry(5), data_word(6), carry(6));

  P7: Iterative_Module port map (carry(6), data_word(7), carry(7));

  P8: Iterative_Module port map (carry(7), data_word(8), carry(8));

  P9: Iterative_Module port map (carry(8), data_word(9), carry(9));

  P10: Iterative_Module port map (carry(9), data_word(10), carry(10));

  P11: Iterative_Module port map (carry(10), data_word(11), carry(11));

  P12: Iterative_Module port map (carry(11), data_word(12), carry(12));

  P13: Iterative_Module port map (carry(12), data_word(13), carry(13));

  P14: Iterative_Module port map (carry(13), data_word(14), carry(14));

  P15: Iterative_Module port map (carry(14), data_word(15), carry(15));

  parity <= carry(15); --parity = 0 is even parity and 1 if odd parity

end parity_16bit_arch;
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which happens anyway.) Presumably, RESTART would be used only with great care or in unusual circum-
stances (e.g., during debugging).

8.81 This problem can be a bit confusing since the states in Table 7–14 have the same names as the ’163 data inputs.
Therefore, we shall use the names SA, SB, and so on for the states.

The idea is to normally allow the counter to count to the next state, but to force it to go to SA or SB when the
wrong input is received. The CLR_L input is used to go to SA (0000), and the LD_L input is used to go to SB
(0001; the counter’s A–D data inputs are tied LOW and HIGH accordingly).

Inspecting the state table on page 582 of the text, we see that state A should be loaded when X=1 and the
machine is in state SA, SD, or SH. Thus,

All of the other next-states when X=1 are the natural successors obtained by counting.

Similarly, state SB should be loaded when X=0 and the machine is in state SB, SC, SE, SF, or SH. In addition,
notice that in state SG, the next state SE is required when X=0; the load input must be used in this case too, but
a different value must be loaded. Thus, LD_L will be asserted in six of the eight states when X=0.

Optionally, LD_L could be easily asserted in the remaining two states as well, since the required next states (SB
and SE) are ones that we must generate in other six cases anyway. Thus, we can connect X to the LD_L input, so
we always load when X=0. Then, we load either SB (0010) or SE (0100) depending on the current state. There-
fore, we can write the following equations for data inputs A–D:

Alternatively, we could realize C as an AND-OR circuit and complement to get B:

module TIMEGEN6 
title 'Six-phase Master Timing Generator'

" Input and Output pins 
MCLK, RESET, RUN, RESTART                  pin;
T1, P1_L, P2_L, P3_L, P4_L, P5_L, P6_L     pin istype 'reg'; 

" State definitions
PHASES = [P1_L, P2_L, P3_L, P4_L, P5_L, P6_L];
NEXTPH = [P6_L, P1_L, P2_L, P3_L, P4_L, P5_L];
SRESET = [1, 1, 1, 1, 1, 1];
P1 =     [0, 1, 1, 1, 1, 1];
P6 =     [1, 1, 1, 1, 1, 0];

equations
T1.CLK = MCLK; PHASES.CLK = MCLK;

WHEN (RESET & PHASES==P6 & !T1) THEN {T1 := 1; PHASES := SRESET;}
ELSE WHEN (PHASES==SRESET) # RESTART THEN {T1 := 1; PHASES := P1;}
ELSE WHEN RUN & T1 THEN {T1 := 0; PHASES := PHASES;}
ELSE WHEN RUN & !T1 THEN {T1 := 1; PHASES := NEXTPH;}
ELSE {T1 := T1; PHASES := PHASES;}

end TIMEGEN6

CLR_L X Q( C ′ QB′ QA ′⋅ ⋅ ⋅ QC ′ QB QA⋅ ⋅ QC QB QA )⋅ ⋅+ +[ ]′=

X Q( C ′ QB′ QA⋅ ⋅ ⋅ QB QA )⋅+[ ]′=

A 0=

B SA SB SC SE SF SH+ + + + +=

QB ′ QC′ QA ′⋅ QC QA⋅+ +=

C B ′=

D 0=

C QC′ QB QA⋅ ⋅ QC QB QA′⋅ ⋅+=

B C′=
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The logic diagram follows directly from these equations. The output logic can be realized using the equations
on page 584 of the text. 

8.90 Transitions on SYNCIN occur a maximum of 20 ns after the rising edge of CLOCK. Given a 40-ns clock period
and a 10-ns setup-time requirement for the other ’ALS74s, 10 ns is the maximum propagation delay of the
combinational logic.


