
Section *2.15 Codes for Detecting and Correcting Errors 61

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

syndrome is 110, or 6). By complementing the bit in position 6 of the received
word, we determine that the correct word is 0001011.

A distance-3 Hamming code can easily be modified to increase its mini-
mum distance to 4. We simply add one more check bit, chosen so that the parity
of all the bits, including the new one, is even. As in the 1-bit even-parity code,
this bit ensures that all errors affecting an odd number of bits are detectable. In
particular, any 3-bit error is detectable. We already showed that 1- and 2-bit
errors are detected by the other parity bits, so the minimum distance of the mod-
ified code must be 4.

Distance-3 and distance-4 Hamming codes are commonly used to detect
and correct errors in computer memory systems, especially in large mainframe
computers where memory circuits account for the bulk of the system’s failures.
These codes are especially attractive for very wide memory words, since the
required number of parity bits grows slowly with the width of the memory word,
as shown in Table 2-15.

2.15.4 CRC Codes
Beyond Hamming codes, many other error-detecting and -correcting codes have
been developed. The most important codes, which happen to include Hamming
codes, are the cyclic redundancy check (CRC) codes. A rich set of knowledge
has been developed for these codes, focused both on their error detecting and
correcting properties and on the design of inexpensive encoders and decoders
for them (see References).

Two important applications of CRC codes are in disk drives and in data
networks. In a disk drive, each block of data (typically 512 bytes) is protected
by a CRC code, so that errors within a block can be detected and, in some drives,
corrected. In a data network, each packet of data ends with check bits in a CRC

Ta b l e 2 - 1 5 Word sizes of distance-3 and distance-4 Hamming codes.

Minimum-distance-3 Codes Minimum-distance-4 Codes

Information Bits Parity Bits Total Bits Parity Bits Total Bits

1 2 3 3 4

≤ 4 3 ≤ 7 4 ≤ 8

≤ 11 4 ≤ 15 5 ≤ 16

≤ 26 5 ≤ 31 6 ≤ 32

≤ 57 6 ≤ 63 7 ≤ 64

≤ 120 7 ≤ 127 8 ≤ 128

cyclic redundancy
check (CRC) code

62 Chapter 2 Number Systems and Codes

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

code. The CRC codes for both applications were selected because of their burst-
error detecting properties. In addition to single-bit errors, they can detect multi-
bit errors that are clustered together within the disk block or packet. Such errors
are more likely than errors of randomly distributed bits, because of the likely
physical causes of errors in the two applications—surface defects in disc drives
and noise bursts in communication links.

2.15.5 Two-Dimensional Codes
Another way to obtain a code with large minimum distance is to construct a two-
dimensional code, as illustrated in Figure 2-14(a). The information bits are con-
ceptually arranged in a two-dimensional array, and parity bits are provided to
check both the rows and the columns. A code Crow with minimum distance drow is
used for the rows, and a possibly different code Ccol with minimum distance dcol
is used for the columns. That is, the row-parity bits are selected so that each row
is a code word in Crow and the column-parity bits are selected so that each column
is a code word in Ccol. (The “corner” parity bits can be chosen according to either
code.) The minimum distance of the two-dimensional code is the product of drow
and dcol; in fact, two-dimensional codes are sometimes called product codes.

two-dimensional code

(a)

information bits
checks
on rows

Rows are
code words
in Crow

checks
on checkschecks on columns

Columns are code words in Ccol

(b)

information bits

Rows are
code words
in 1-bit
even-parity
code

Columns are code words
in 1-bit even-parity code

No effect on column parity

No effect on
row parity

(c)

Figure 2-14
Two-dimensional codes:
(a) general structure;
(b) using even parity for
both the row and column
codes to obtain
minimum distance 4;
(c) typical pattern of an
undetectable error.

product code

Section *2.15 Codes for Detecting and Correcting Errors 63

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

As shown in Figure 2-14(b), the simplest two-dimensional code uses 1-bit
even-parity codes for the rows and columns, and has a minimum distance of
2 ⋅ 2, or 4. You can easily prove that the minimum distance is 4 by convincing
yourself that any pattern of one, two, or three bits in error causes incorrect parity
of a row or a column or both. In order to obtain an undetectable error, at least
four bits must be changed in a rectangular pattern as in (c).

The error detecting and correcting procedures for this code are straightfor-
ward. Assume we are reading information one row at a time. As we read each
row, we check its row code. If an error is detected in a row, we can’t tell which bit
is wrong from the row check alone. However, assuming only one row is bad, we
can reconstruct it by forming the bit-by-bit Exclusive OR of the columns, omit-
ting the bad row, but including the column-check row.

To obtain an even larger minimum distance, a distance-3 or -4 Hamming
code can be used for the row or column code or both. It is also possible to con-
struct a code in three or more dimensions, with minimum distance equal to the
product of the minimum distances in each dimension.

An important application of two-dimensional codes is in RAID storage
systems. RAID stands for “redundant array of inexpensive disks.” In this
scheme, n+1 identical disk drives are used to store n disks worth of data. For
example, eight 8-Gigabyte drives could be use to store 64 Gigabytes of non-
redundant data, and a ninth 8-gigabyte drive would be used to store checking
information.

Figure 2-15 shows the general scheme of a two-dimensional code for a
RAID system; each disk drive is considered to be a row in the code. Each drive
stores m blocks of data, where a block typically contains 512 bytes. For example,
an 8-gigabyte drive would store about 16 million blocks. As shown in the figure,
each block includes its own check bits in a CRC code, to detect errors within that
block. The first n drives store the nonredundant data. Each block in drive n+1

RAID

information blocks

Disk 1

Disk 2

Disk 3

Disk 4

Disk 5

Disk 6

Disk n

Disk n+1

Block number

1 2 3 4 5 6 7 8 . . . m9 10 1211

check blocks

. . .

. . .

. One block

CRC
Data bytes

1 2 3 4 5 6 5127
. . .
. . .

Figure 2-15
Structure of error-
correcting code for
a RAID system.

64 Chapter 2 Number Systems and Codes

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

stores parity bits for the corresponding blocks in the first n drives. That is, each
bit i in drive n+1 block b is chosen so that there are an even number of 1s in block
b bit position i across all the drives.

In operation, errors in the information blocks are detected by the CRC
code. Whenever an error is detected in a block on one of the drives, the correct
contents of that block can be constructed simply by computing the parity of the
corresponding blocks in all the other drives, including drive n+1. Although this
requires n extra disk read operations, it’s better than losing your data! Write
operations require extra disk accesses as well, to update the corresponding check
block when an information block is written (see Exercise 2.46). Since disk
writes are much less frequent than reads in typical applications, this overhead
usually is not a problem.

2.15.6 Checksum Codes
The parity-checking operation that we’ve used in the previous subsections is
essentially modulo-2 addition of bits—the sum modulo 2 of a group of bits is 0
if the number of 1s in the group is even, and 1 if it is odd. The technique of mod-
ular addition can be extended to other bases besides 2 to form check digits.

For example, a computer stores information as a set of 8-bit bytes. Each
byte may be considered to have a decimal value from 0 to 255. Therefore, we can
use modulo-256 addition to check the bytes. We form a single check byte, called
a checksum, that is the sum modulo 256 of all the information bytes. The result-
ing checksum code can detect any single byte error, since such an error will cause
a recomputed sum of bytes to disagree with the checksum.

Checksum codes can also use a different modulus of addition. In particular,
checksum codes using modulo-255, ones’-complement addition are important
because of their special computational and error detecting properties, and
because they are used to check packet headers in the ubiquitous Internet Protocol
(IP) (see References).

2.15.7 m-out-of- n Codes
The 1-out-of-n and m-out-of-n codes that we introduced in Section 2.13 have a
minimum distance of 2, since changing only one bit changes the total number of
1s in a code word and therefore produces a noncode word.

These codes have another useful error-detecting property—they detect uni-
directional multiple errors. In a unidirectional error, all of the erroneous bits
change in the same direction (0s change to 1s, or vice versa). This property is
very useful in systems where the predominant error mechanism tends to change
all bits in the same direction.

checksum
checksum code

ones’-complement
checksum code

unidirectional error

